Skip to main content
Log in

Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L.

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

The present study reports the effect of different seasons on polyphenol content and antioxidant potential of ethanolic, methanolic, ethyl acetate, and aqueous extracts of leaves, stems, and roots of Premna integrifolia. Ethyl acetate extract of leaves (EAEPI) collected in the rainy season showed potent antioxidant activity with highest total phenol (74.33 ± 2.26 µg/mg, gallic acid equivalent), and flavonoid (98.83 ± 0.26 µg/mg, rutin equivalent) content. Therefore, EAEPI extract was subjected to characterization by UHPLC-Q-TOF-MS/MS and GC–MS analysis for the identification of active constituents. UHPLC-Q-TOF-MS/MS analysis in + ve ion mode revealed the presence of eight polyphenolic compounds namely quercetin-3-D-xyloside, kaempferol-3,7-O-bis-alpha-L-rhamnoside, isorhamnetin-3-Oglucoside, luteolin-3′,7-di-O-glucoside, eriodictyol-7-O-glucoside, syringetin-3-O-galactoside, petunidin-3-O-beta-glucopyranoside and vitexin-2″-O-rhamnoside. GC–MS analysis confirmed the presence of 26 compounds with six major compounds viz; citronellol, phytol acetate, campesterol, squalene, stigmasterol, and hexadecanoic acid. These compounds are reported for the first time from P. integrifolia except phytol and stigmasterol. Our previous study validates the hepatoprotective potential of P. integrifolia but there was no idea about the bioactive compound responsible for the activity. So, in present work, the major compounds identified in spectrometry analysis were subjected to in silico docking against an important liver enzyme alanine amino transaminase to confirm its hepatoprotective properties. Docking analysis validates the presence of two hepatoprotective lead compounds stigmasterol, and campesterol, which satisfy the drug-likeness criteria with good absorption, distribution, metabolism, and toxicity properties. Thus, present work gives a clear insight about the influence of season on the total polyphenolic constituent in different plant parts of P. integrifolia, their antioxidant potential and preclinical evaluation of hepatoprotective lead compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

EAEPI:

Ethyl acetate extract of Premna integrifolia

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

NBT:

Nitro blue tetrazolium

TBARS:

Thiobarbituric acid-reactive species

TPC:

Total phenolic content

TFC:

Total flavonoid content

ALT:

Alanine aminotransaminase

ADMET:

Absorption, Distribution, Metabolism, Excretion, Toxicity

References

  • Adeosun CB, Olaseinde S, Opeifa A, Atolani O (2013) Essential oil from the stem bark of Cordia sebestena scavenges free radicals. JACME 3:138–141

    Google Scholar 

  • Agnihotri VK, Elsohly HN, Khan SI, Jacob MR, Joshi VC, Smillie T, Khan IA, Walker LA (2008) Constituents of Nelumbo nucifera leaves and their antimalarial and antifungal activity. Phytochem Lett 1:89–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L (2003) Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51:6657–6662

    CAS  PubMed  Google Scholar 

  • Bonanome A, Grundy SM (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 318:1244–1248

    CAS  PubMed  Google Scholar 

  • Bose LV, George K, Iyer RS, Deepa T (2012) Identification of novel cardiac principle in the roots of Premna serratifolia L. J Pharm Res 5:3261–3264

    CAS  Google Scholar 

  • Bottje W, Erf G, Bersi T, Wang S, Barnes D, Beers K (1997) Effect of dietary dl-alphatocopherol on tissue alpha-and gamma-tocopherol and pulmonary hypertension syndrome (ascites) in broilers. Poult Sci 76:1506–1512

    CAS  PubMed  Google Scholar 

  • Buonocore G, Perrone S, Tataranno ML (2010) Oxygen toxicity: chemistry and biology of reactive oxygen species. Seminars in fetal and neonatal medicine, vol 4. Elsevier, Amsterdam, pp 186–190

    Google Scholar 

  • Chang C-C, Yang M-H, Wen H-M, Chern J-C (2002) Estimation of total flavonoid content in Propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  • Chaves N, Escudero JC, Gutierrez-Merino C (1997) Role of ecological variables in the seasonal variation of flavonoid content of Cistus ladanifer exudate. J Chem Ecol 23:579–603

    CAS  Google Scholar 

  • Chiswick ML, Johnson M, Woodhall C, Gowland M, Davies J, Toner N, Sims DG (1983) Protective effect of vitamin E (DL-alpha-tocopherol) against intraventricular haemorrhage in premature babies. Br Med J (Clin Res Ed) 287:81–84

    CAS  Google Scholar 

  • Choi JM, Lee EO, Lee HJ, Kim KH, Ahn KS, Shim BS, Kim NI, Song MC, Baek NI, Kim SH (2007) Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytother Res 21:954–959

    CAS  PubMed  Google Scholar 

  • Choi J-H, Kim D-W, Yun N, Choi J-S, Islam MN, Kim Y-S, Lee S-M (2011) Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J Nat Prod 74:1055–1060

    CAS  PubMed  Google Scholar 

  • Christie PJ, Alfenito MR, Walbot V (1994) Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549

    CAS  Google Scholar 

  • Desai K, Wei H, Lamartiniere C (1996) The preventive and therapeutic potential of the squalene-containing compound, Roidex, on tumor promotion and regression. Cancer Lett 101:93–96

    CAS  PubMed  Google Scholar 

  • Do Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation an overview. Plant secondary metabolism engineering. Springer, New York, pp 1–13

    Google Scholar 

  • Fokum FD, Shahidullah M, Jorgensen E, Binns H (2017) Prevalence and elimination of childhood lead poisoning in Illinois, 1996–2012. Applied demography and public health in the 21st century. Springer, New Yoek, pp 221–236

    Google Scholar 

  • Ganaie H, Ali M, Ganai B, Kaur J, Ahmad M (2016) GC–MS analysis and evaluation of mutagenic and antimutagenic activity of ethyl acetate extract of Ajuga bracteosa wall ex. Benth: an endemic medicinal plant of Kashmir Himalaya, India. J Clin Toxicol 6:0495–2161

    Google Scholar 

  • Ghosh T, Maity TK, Singh J (2011) Evaluation of antitumor activity of stigmasterol, a constituent isolated from Bacopa monnieri Linn aerial parts against Ehrlich Ascites Carcinoma in mice. Orient Pharm Exp Med 11:41–49

    Google Scholar 

  • Gokani RH, Lahiri SK, Santani DD, Shah MB (2011) Evaluation of anti-inflammatory and antioxidant activity of Premna integrifolia root. J Complement Integr Med. https://doi.org/10.2202/1553-3840.1216

    Article  PubMed  Google Scholar 

  • Gómez-Alonso S, Collins VJ, Vauzour D, Rodríguez-Mateos A, Corona G, Spencer JP (2012) Inhibition of colon adenocarcinoma cell proliferation by flavonols is linked to a G2/M cell cycle block and reduction in cyclin D1 expression. Food Chem 130:493–500

    Google Scholar 

  • Gopal RH, Purushothaman K (1984) Effect of plant isolates on coagulation of blood: an in vitro study. Bull Med Ethnobot Res 5:171–177

    Google Scholar 

  • Group AP (2009) An update of the Angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Google Scholar 

  • Halliwell B, Aeschbach R, Löliger J, Aruoma O (1995) The characterization of antioxidants. Food Chem Toxicol 33:601–617

    CAS  PubMed  Google Scholar 

  • Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y (2002) Antitumoractivity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res 22:2587–2590

    CAS  PubMed  Google Scholar 

  • Henry GE, Momin RA, Nair MG, Dewitt DL (2002) Antioxidant and cyclooxygenase activities of fatty acids found in food. J Agric Food Chem 50:2231–2234

    CAS  PubMed  Google Scholar 

  • Hu Q, Zhang DD, Wang L, Lou H, Ren D (2012) Eriodictyol-7-O-glucoside, a novel Nrf2 activator, confers protection against cisplatin-induced toxicity. Food Chem Toxicol 50:1927–1932

    CAS  PubMed  Google Scholar 

  • Idan SA, Al-Marzoqi AH, Hameed IH (2015) Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. Afr J Biotech 14:3131–3158

    CAS  Google Scholar 

  • Igarashi K, Mikami T, Takahashi Y, Sato H (2008) Comparison of the preventive activity of isorhamnetin glycosides from atsumi-kabu (red turnip, Brassica campestris L.) Leaves on carbon tetrachloride-induced liver Injury in mice. Biosci Biotechnol Biochem 72:856–860

    CAS  PubMed  Google Scholar 

  • Jananie R, Priya V, Vijayalakshmi K (2011) Determination of bioactive components of Cynodon dactylon by GC-MS analysis. N Y Sci J 4:1–5

    Google Scholar 

  • Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633

    PubMed  Google Scholar 

  • Ko T-F, Weng Y-M, Chiou RY-Y (2002) Squalene content and antioxidant activity of Terminalia catappa leaves and seeds. J Agric Food Chem 50:5343–5348

    CAS  PubMed  Google Scholar 

  • Lajubutu B, Pinney R, Roberts M, Odelola H, Oso B (1995) Antibacterial activity of diosquinone and plumbagin from the root of Diospyros mespiliformis (Hostch) (Ebenaceae). Phytother Res 9:346–350

    CAS  Google Scholar 

  • Leonetti C, Biroccio A, Gabellini C, Scarsella M, Maresca V, Flori E, Bove L, Pace A, Toppacciaro A, Zupi G (2003) α-tocopherol protects against cisplatin-induced toxicity without interfering with antitumor efficacy. Int J Cancer 104:243–250

    CAS  PubMed  Google Scholar 

  • Leung YH, Liu RH (2000) Trans-10, cis-12-conjugated linoleic acid isomer exhibits stronger oxyradical scavenging capacity than cis-9, trans-11-conjugated linoleic acid isomer. J Agric Food Chem 48:5469–5475

    CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    CAS  Google Scholar 

  • López-Lázaro M (2009) Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 9:31–59

    PubMed  Google Scholar 

  • Majumder R, Akter S, Naim Z, Al-Amin M, Alam MB (2014) Antioxidant and anti-diabetic activities of the methanolic extract of Premna integrifolia bark. Adv Biol Res 8:29–36

    Google Scholar 

  • Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MG, Culf A, Scott S (1998) Carbon dioxidetransfer over a Central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    CAS  Google Scholar 

  • Mcdonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidantactivity of olive extracts. Food Chem 73:73–84

    CAS  Google Scholar 

  • Mckillop IH, Schrum LW (2005) Alcohol and liver cancer. Alcohol 35:195–203

    CAS  PubMed  Google Scholar 

  • Mishra AK, Upadhyay R, Chaurasia JK, Tiwari KN (2016) Comparative antioxidant study in different flower extracts of Nyctanthes arbor-tristis (L.)(Oleaceae): an important medicinal plant. Braz J Bot 39:813–820

    Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 30:2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muthukumaran P, Salomi S, Umamaheshwari R (2013) In vitro antioxidant activity of Premna serratifolia Linn. Asian J Res Pharm Sci 3:15–18

    Google Scholar 

  • Ogunlesi M, Okiei W, Ofor E, Osibote AE (2009) Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma. Afr J Biotech 8:7042–7050

    CAS  Google Scholar 

  • Okeleye BI, Mkwetshana NT, Ndip RN (2013) Evaluation of the antibacterial and antifungal potential of Peltophorum africanum: toxicological effect on human chang liver cell line. Sci World J. https://doi.org/10.1155/2013/878735

    Article  Google Scholar 

  • Pandey MP (2016) Carpesterol-A novel phytosterol obtained from the plants of the family solanaceae with evaluation of antineoplastic activity. J Med Pharm Allied Sci 1:1–10

    Google Scholar 

  • Pasqualini V, Robles C, Garzino S, Greff S, Bousquet-Mélou A, Bonin G (2003) Phenolic compounds content in Pinus halepensis Mill. Needles: a bioindicator of air pollution. Chemosphere 52:239–248

    CAS  PubMed  Google Scholar 

  • Patel MJ, Patel J (2012) Evaluation of the anti-hyperlipidaemic activity of Premna integrifolia on nicotine induced hyperlipidaemia in rats. Int J Pharm Biosci 3:226–232

    Google Scholar 

  • Poongulali S, Sundararaman M (2016) Antimycobacterial, anticandidal and antioxidant properties of Terminalia catappa and analysis of their bioactive chemicals. Int J Pharm Biol Sci 6:69–83

    CAS  Google Scholar 

  • Rajab MS, Cantrell CL, Franzblau SG, Fischer NH (1998) Antimycobacterial activity of (E)-phytol and derivatives: a preliminary structure-activity study. Planta Med 64:2–4

    CAS  PubMed  Google Scholar 

  • Rajendran R, Krishnakumar E (2010) Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis. Avicenna J Med Biotechnol 2:101–106

    PubMed  PubMed Central  Google Scholar 

  • Rajendran R, Basha NS, Ruby S (2009) Evaluation of in vitro Antioxidant Activity of stembark and stem-wood of Premna serratifolia Lin., (Verbenaceae). Phytochemistry 1:11–14

    Google Scholar 

  • Saeed MA, Sabir A (2001) Antibacterial activity of Caesalpinia bonducella seeds. Fitoterapia 72:807–809

    CAS  PubMed  Google Scholar 

  • Safarpour S, Givianrad M, Beheshti P (2012) Detection and determination of antioxidant compounds of seed oil of capparis spinosa l. In iran

  • Selvam TN, Venkatakrishnan V, Damodar KS, Elumalai P (2012) Antioxidant and tumor cell suppression potential of Premna serratifolia Linn leaf. Toxicol Int 19:31

    PubMed  PubMed Central  Google Scholar 

  • Sermakkani M, Thangapandian V (2012) GC-MS analysis of Cassia italica leaf methanol extract. Asian J Pharm Clin Res 5:90–94

    CAS  Google Scholar 

  • Shin E, Hong H, Park J, Oh Y, Jung J, Lee Y (2016) Characterization of Staphylococcus aureus faecal isolates associated with food-borne disease in Korea. J Appl Microbiol 121:277–286

    CAS  PubMed  Google Scholar 

  • Singh C, Prakash C, Tiwari KN, Mishra SK, Kumar V (2018) Premna integrifolia ameliorates cyclophosphamide-induced hepatotoxicity by modulation of oxidative stress and apoptosis. Biomed Pharmacother 107:634–643

    CAS  PubMed  Google Scholar 

  • Singh C, Prakash C, Mishra P, Tiwari KN, Mishra SK, More RS, Kumar V, Singh J (2019) Hepatoprotective efficacy of Premna integrifolia L. leaves against aflatoxin B1-induced toxicity in mice. Toxicon 166:88–100

    CAS  PubMed  Google Scholar 

  • Sivakrishnan S, Muthu AK (2014) Evaluation of hepatoprotective activity of squalene isolated from Albizia procera against paracetamol induced hepatotoxicity on Wistar rats. World J Pharm Pharm Sci 3:1351–1362

    Google Scholar 

  • Tiwari S, Mishra S, Misra DR, Upadhyay R (2016) Identification of new bioactive compounds from fruit of Abutilon indicum through GCMS analysis. Biol Forum 8:548–554

    CAS  Google Scholar 

  • Upadhyay R, Tiwari KN (2018) Phyllanthus fraternus a potent natural antioxidant as pharmaceutical supplement. Res J Biotech 13:55–62

    Google Scholar 

  • Upadhyay R, Chaurasia JK, Tiwari KN, Singh K (2014) Antioxidant property of aerial parts and root of Phyllanthus fraternus Webster, an important medicinal plant. Sci World J. https://doi.org/10.1155/2014/692392

    Article  Google Scholar 

  • Wang L, Yang Z, Wang S, Wang S, Liu J (2011) Antioxidant and antibacterial activities of Camptotheca acuminate D. Seed oil. Afr J Microbiol Res 5:5854–5862

    CAS  Google Scholar 

  • Wang Y, Tang C, Zhang H (2015) Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. On ccl4-induced oxidative liver injury in mice. J Food Drug Anal 23:310–317

    CAS  PubMed  Google Scholar 

  • Wu Y-B, Zheng L-J, Wu J-G, Chen T-Q, Yi J, Wu J-Z (2012) Antioxidant activities of extract and fractions from Receptaculum nelumbinis and related flavonol glycosides. Int J Mol Sci 13:7163–7173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Chen X, Hou T, Cao D (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49:5–14

    Google Scholar 

  • Yoshida Y, Niki E (2003) Antioxidant effects of phytosterol and its components. J Nutr Sci Vitaminol 49:277–280

    CAS  PubMed  Google Scholar 

  • Yosr Z, Imen BHY, Rym J, Chokri M, Mohamed B (2018) Sex-related differences in essential oil composition, phenol contents and antioxidant activity of aerial parts in Pistacia lentiscus L. During seasons. Ind Crops Prod 121:151–159

    CAS  Google Scholar 

  • Yulia R, Christyaningsih J, Kristina EM, Soegiono NK (2016) The antioxidant compounds in methanol extract of glycine max l. merr detam i and ii varieties by kinetic maceration method

  • Zhuang SR, Chen SL, Tsai JH, Huang CC, Wu TC, Liu WS, Tseng HC, Lee HS, Huang MC, Shane GT (2009) Effect of citronellol and the Chinese medical herb complex on cellular immunity of cancer patients receiving chemotherapy/radiotherapy. Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 23:785–790

    CAS  Google Scholar 

Download references

Acknowledgements

Authors CS and KNT would like to acknowledge University Grants Commission (UGC), Government of India, for financial assistance. Author KNT thankfully acknowledges to BHU Varanasi for providing financial assistance through incentive Grant under IoE scheme (6031) for research. Advance Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi acknowledged for providing GC-MS and UPLC/MS-MS facility.

Author information

Authors and Affiliations

Authors

Contributions

CS designed the study, conducted the experiment, performs the analysis and wrote the paper. KNT supervisor of this study designed the study and reviewed drafts of the manuscript. RU performed the analysis and reviewed the final draft.

Corresponding author

Correspondence to Kavindra Nath Tiwari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C., Upadhyay, R. & Tiwari, K.N. Comparative analysis of the seasonal influence on polyphenolic content, antioxidant capacity, identification of bioactive constituents and hepatoprotective biomarkers by in silico docking analysis in Premna integrifolia L.. Physiol Mol Biol Plants 28, 223–249 (2022). https://doi.org/10.1007/s12298-021-01120-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01120-0

Keywords

Navigation