Skip to main content
Log in

Development of Flow Injection Analysis Method for the Second-Tier Estimation of Succinylacetone in Dried Blood Spot of Newborn Screening

  • Original Research Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Tyrosinemia type 1 (TYR1) is a devastating aminoacidopathy, leading to mortality without medical intervention. Although, detection and quantification of tyrosine in dried blood spot (DBS) is possible, but being a non-specific marker for TYR1 and its frequent association with transient neonatal tyrosinemia limits its applicability. Despite, Succinylacetone (SUAC) being a pathognomonic marker for TYR1, but not often detectable by routine newborn screening (NBS). We envisaged to determine SUAC in DBS by an in-house flow injection analysis method on a liquid chromatography/tandem mass spectrometry (LC–MS/MS). Succinylacetone was eluted from the residual 3.2 mm DBS of primary NBS by an extraction solution containing acetonitrile–water–formic acid mixture containing stable-isotope labelled internal standard (IS) for SUAC and hydrazine. Detection and quantification was performed by the mass spectrometer using multiple reaction monitoring mode at m/z 155.1 → 109.1 for SUAC and m/z 160.1 → 114.1 for the SUAC IS. The assay was linear over a calibration range of 0.122–117.434 µmol/L. The Intra-day and Inter-day precision and accuracy for the assay was determined at two different levels of SUAC (2.542 µmol/L and 14.641 µmol/L), which showed a coefficient of variation of (6.91% and 12.65%) and (8.57% and 12.27%) respectively. The accuracy also ranged between 101.2 and 103.87%.This method provided the necessary sensitivity, precision, accuracy, recovery and linearity and hence, has the potential to reduce the false positive, false negative results which significantly minimise the cost involved in the screening and follow up of TYR1 patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vernon HJ. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr. 2015;169:778–82.

    PubMed  Google Scholar 

  2. Almannai M, Marom R, Sutton VR. Newborn screening: a review of history, recent advancements, and future perspectives in the era of next generation sequencing. Curr Opin Pediatr. 2016;28:694–9.

    PubMed  Google Scholar 

  3. Levy HL, Shih VE, Madigan PM, MacCready RA. Transient tyrosinemia in full-term infants. JAMA. 1969;209:249–50.

    CAS  PubMed  Google Scholar 

  4. Tanguay RM, Valet JP, Lescault A, Duband JL, Laberge C, Lettre F, et al. Different molecular basis for fumarylacetoacetate hydrolase deficiency in the two clinical forms of hereditary tyrosinemia (type I). Am J Hum Genet. 1990;47:308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mak CM, Lam C-W, Chim S, Siu T-S, Ng K-F, Tam S. Biochemical and molecular diagnosis of tyrosinemia type I with two novel FAH mutations in a Hong Kong chinese patient: recommendation for expanded newborn screening in Hong Kong. Clin Biochem. 2013;46:155–9.

    CAS  PubMed  Google Scholar 

  6. Angileri F, Bergeron A, Morrow G, Lettre F, Gray G, Hutchin T, et al. Geographical and ethnic distribution of mutations of the fumarylacetoacetate hydrolase gene in hereditary tyrosinemia type 1. JIMD Rep. 2015;19:43–58.

    PubMed  PubMed Central  Google Scholar 

  7. de Laet C, Dionisi-Vici C, Leonard JV, McKiernan P, Mitchell G, Monti L, et al. Recommendations for the management of tyrosinaemia type 1. Orphanet J Rare Dis. 2013;8:8.

    PubMed  PubMed Central  Google Scholar 

  8. van Ginkel WG, Jahja R, Huijbregts SCJ, van Spronsen FJ. Neurological and neuropsychological problems in tyrosinemia patients. In: Tanguay RM, editor. Hered Tyrosinemia Pathog Screen Manag. Cham: Springer; 2017. p. 111–22. https://doi.org/10.1007/978-3-319-55780-9_10.

    Chapter  Google Scholar 

  9. Berger R, Smit OPA, Vries SAS, Duran M, Ketting D, Wadman SK. Deficiency of fumarylacetoacetase in a patient with hereditary tyrosinemia. Clin Chim Acta. 1981;114:37–44.

    CAS  PubMed  Google Scholar 

  10. Kvittingen EA, Jellum E, Stokke O. Assay of fumarylacetoacetate fumarylhydrolase in human liver: deficient activity in a case of hereditary tyrosinemia. Clin Chim Acta. 1981;115:311–9.

    CAS  PubMed  Google Scholar 

  11. De Braekeleer M, Larochelle J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean. Am J Hum Genet. 1990;47:302–7.

    PubMed  PubMed Central  Google Scholar 

  12. Hadj-Taieb S, Nasrallah F, Hammami MB, Elasmi M, Sanhaji H, Moncef F, et al. Aminoacidopathies and organic acidurias in Tunisia: a retrospective survey over 23 years. Tunis Med. 2012;90:258–61.

    PubMed  Google Scholar 

  13. Hutchesson AC, Hall SK, Preece MA, Green A. Screening for tyrosinaemia type I. Arch Dis Child Fetal Neonatal Ed. 1996;74:F191–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah I. Tyrosinemia: a report of three cases from India. Indian J Gastroenterol. 2013;32:123–6.

    PubMed  Google Scholar 

  15. Bijarnia S, Puri RD, Ruel J, Gray GF, Jenkinson L, Verma IC. Tyrosinemia type I—diagnostic issues and prenatal diagnosis. Indian J Pediatr. 2006;73:163–5.

    PubMed  Google Scholar 

  16. Karnik D, Thomas N, Eapen CE, Jana AK, Oommen A. Tyrosinemia type I: a clinico-laboratory case report. Indian J Pediatr. 2004;71:929–32.

    PubMed  Google Scholar 

  17. Carpenter KH, Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin Chim Acta. 2002;322:1–10.

    CAS  PubMed  Google Scholar 

  18. Chace DH. Mass spectrometry-based diagnostics: the upcoming revolution in disease detection has already arrived. Clin Chem. 2003;49:1227–8 (author reply 1228–1229).

    CAS  PubMed  Google Scholar 

  19. Goulden KJ, Moss MA, Cole DE, Tithecott GA, Crocker JF. Pitfalls in the initial diagnosis of tyrosinemia: three case reports and a review of the literature. Clin Biochem. 1987;20:207–12.

    CAS  PubMed  Google Scholar 

  20. Avery ME, Clow CL, Menkes JH, Ramos A, Scriver CR, Stern L, et al. Transient tyrosinemia of the newborn: dietary and clinical aspects. Pediatrics. 1967;39:378–84.

    CAS  PubMed  Google Scholar 

  21. Arora N, Stumper O, Wright J, Kelly DA, McKiernan PJ. Cardiomyopathy in tyrosinaemia type I is common but usually benign. J Inherit Metab Dis. 2006;29:54–7.

    CAS  PubMed  Google Scholar 

  22. Blackburn PR, Hickey RD, Nace RA, Giama NH, Kraft DL, Bordner AJ, et al. Silent tyrosinemia type I without elevated tyrosine or succinylacetone associated with liver cirrhosis and hepatocellular carcinoma. Hum Mutat. 2016;37:1097–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Waisbren SE, Albers S, Amato S, Ampola M, Brewster TG, Demmer L, et al. Effect of expanded newborn screening for biochemical genetic disorders on child outcomes and parental stress. JAMA. 2003;290:2564–72.

    CAS  PubMed  Google Scholar 

  24. Prosser LA, Ladapo JA, Rusinak D, Waisbren SE. Parental tolerance of false-positive newborn screening results. Arch Pediatr Adolesc Med. 2008;162:870–6.

    PubMed  Google Scholar 

  25. Hewlett J, Waisbren SE. A review of the psychosocial effects of false-positive results on parents and current communication practices in newborn screening. J Inherit Metab Dis. 2006;29:677–82.

    CAS  PubMed  Google Scholar 

  26. De Jesús VR, Adam BW, Mandel D, Cuthbert CD, Matern D. Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. Mol Genet Metab. 2014;113:67–75.

    PubMed  PubMed Central  Google Scholar 

  27. Gagné R, Lescault A, Grenier A, Laberge C, Mélançon SB, Dallaire L. Prenatal diagnosis of hereditary tyrosinaemia: measurement of succinylacetone in amniotic fluid. Prenat Diagn. 1982;2:185–8.

    PubMed  Google Scholar 

  28. Stinton C, Geppert J, Freeman K, Clarke A, Johnson S, Fraser H, et al. Newborn screening for tyrosinemia type 1 using succinylacetone: a systematic review of test accuracy. Orphanet J Rare Dis 2017 [cited 2020 Apr 24]; 12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343414/.

  29. Sander J, Janzen N, Peter M, Sander S, Steuerwald U, Holtkamp U, et al. Newborn screening for hepatorenal tyrosinemia: tandem mass spectrometric quantification of succinylacetone. Clin Chem Oxf Acad. 2006;52:482–7.

    CAS  Google Scholar 

  30. Mayorandan S, Meyer U, Gokcay G, Segarra NG, de Baulny HO, van Spronsen F, et al. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis. 2014;9:107.

    PubMed  PubMed Central  Google Scholar 

  31. Allard P, Grenier A, Korson MS, Zytkovicz TH. Newborn screening for hepatorenal tyrosinemia by tandem mass spectrometry: analysis of succinylacetone extracted from dried blood spots. Clin Biochem. 2004;37:1010–5.

    CAS  PubMed  Google Scholar 

  32. Pollitt RJ, Green A, McCabe CJ, Booth A, Cooper NJ, Leonard JV, et al. Neonatal screening for inborn errors of metabolism: cost, yield and outcome. Health Technol Assess Winch Engl. 1997;1:1–202.

    Google Scholar 

  33. Therrell BL, Buechner C. Newborn screening for all identifiable disorders with tandem mass spectrometry is cost effective: supporting arguments. Ann Acad Med Singap. 2008;37:32–4.

    PubMed  Google Scholar 

  34. Kvittingen EA. Hereditary tyrosinemia type I: an overview. Scand J Clin Lab Investig Suppl. 1986;184:27–34.

    CAS  Google Scholar 

  35. Kitagawa T. Hepatorenal tyrosinemia. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:192–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Grenier A, Lescault A, Laberge C, Gagné R, Mamer O. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta Int J Clin Chem. 1982;123:93–9.

    CAS  Google Scholar 

  37. la Marca G, Malvagia S, Pasquini E, Innocenti M, Fernandez MR, Donati MA, et al. The inclusion of succinylacetone as marker for tyrosinemia type I in expanded newborn screening programs. Rapid Commun Mass Spectrom RCM. 2008;22:812–8.

    PubMed  Google Scholar 

  38. Johnson DW, Gerace R, Ranieri E, Trinh M-U, Fingerhut R. Analysis of succinylacetone, as a Girard T derivative, in urine and dried bloodspots by flow injection electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom RCM. 2007;21:59–63.

    CAS  PubMed  Google Scholar 

  39. Jakobs C, Kvittingen EA, Berger R, Haagen A, Kleijer W, Niermeijer M. Prenatal diagnosis of tyrosinaemia type I by use of stable isotope dilution mass spectrometry. Eur J Pediatr. 1985;144:209–10.

    CAS  PubMed  Google Scholar 

  40. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis. 2007;30:585–92.

    CAS  PubMed  Google Scholar 

  41. Schulze A, Lindner M, Kohlmüller D, Olgemöller K, Mayatepek E, Hoffmann GF. Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics. 2003;111:1399–406.

    PubMed  Google Scholar 

  42. Sander J, Kattner E, Christoph J. Peter M [Newborn metabolic screening]. Z Geburtshilfe Neonatol. 2008;212:1–4.

    CAS  PubMed  Google Scholar 

  43. Turgeon C, Magera MJ, Allard P, Tortorelli S, Gavrilov D, Oglesbee D, et al. Combined newborn screening for succinylacetone, amino acids, and acylcarnitines in dried blood spots. Clin Chem. 2008;54:657–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to Professor Dr. B.K. Thelma (University of Delhi-South Campus, Delhi) and Mr. Chandrashekar (Sciex Pvt. Ltd, Gurugram, India), who has monitored my progress and offered me with invaluable learning opportunities. My acknowledgement would not be complete without thanking my team mates whose small and big contributions and helpful scientific discussion was the driving force for this study.

Funding

No source of funding except authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijo Varughese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Ethical clearance approval obtained before the start of the study from institutional ethics committee, MAMC (F. No./11/IEC/MAMC/2011/317/2015).

Informed Consent

Informed consents are not applicable. Residual samples after completion of the requested laboratory analysis were anonymized and used for the study. Study results were reported to sample anonymizer who conveyed the reports to the treating clinician.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varughese, B., Madrewar, D., Polipalli, S.K. et al. Development of Flow Injection Analysis Method for the Second-Tier Estimation of Succinylacetone in Dried Blood Spot of Newborn Screening. Ind J Clin Biochem 37, 40–50 (2022). https://doi.org/10.1007/s12291-020-00944-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-020-00944-z

Keywords

Navigation