Skip to main content

Advertisement

Log in

The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients

  • Advances of Diagnosis of Invasive Fungal Infections (O Morrissey, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this paper is to review the armamentarium of tests available for diagnosis of invasive fungal infections (IFI) in lung transplant recipients (LTs), focusing on developments over the last 5 years.

Recent Findings

The use of fungal biomarkers is increasing, especially Aspergillus galactomannan, which now has an established role in diagnosis and prevention of invasive aspergillosis. Molecular diagnostics are increasingly being applied to tissue and other specimens to assist identification of fungi. Functional imaging has an evolving role, improving diagnostic precision and time to diagnosis.

Summary

While demonstration of fungi in tissue obtained biopsy remains the gold standard for diagnosis of IFI in LTs, this is not always possible. There are now a host of biomarkers, molecular, and imaging techniques available that are less invasive and allow earlier diagnosis of IFIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Thabut G, Mal H. Outcomes after lung transplantation. J Thorac Dis. 2017;9:2684–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chambers DC, Perch M, Zuckermann A, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation : Thirty-eighth adult lung transplantation report — 2021 ; focus on recipient characteristics. J Heart Lung Transplant. 2022;40:1060–1072. Available at: https://doi.org/10.1016/j.healun.2021.07.021.

  3. Chang A, Musk M, Lavender M, et al. Epidemiology of invasive fungal infections in lung transplant recipients in Western Australia. Transpl Infect Dis. 2019;21:1–7.

    Article  CAS  Google Scholar 

  4. Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (Transnet). Clin Infect Dis. 2010;50:1101–11.

    Article  PubMed  Google Scholar 

  5. Chong PP, Kennedy CC, Hathcock MA, Kremers WK, Razonable RR. Epidemiology of invasive fungal infections in lung transplant recipients on long-term azole antifungal prophylaxis. Clin Transplant. 2015;29:311–8.

    Article  PubMed  Google Scholar 

  6. •• Husain S, Bhaskaran A, Rotstein C, et al. A strategy for prevention of fungal infections in lung transplantation: role of bronchoalveolar lavage fluid galactomannan and fungal culture. J Heart Lung Transplant. 2018;37:886–894. Available at: https://doi.org/10.1016/j.healun.2018.02.006. This paper reports that a pre-emptive approach to IA prevention in LTs using BALF fungal culture and GM reduces the risk of IA and allows a 50% reduction in antifungal exposure when compared to universal antifungal prophylaxis.

  7. Hosseini‐Moghaddam SM, Ouédraogo A, Naylor KL, et al. Incidence and outcomes of invasive fungal infection among solid organ transplant recipients: a population‐based cohort study. Transpl Infect Dis. 2020:e13250. https://doi.org/10.1111/tid.13250.

  8. Husain S, Silveira FP, Azie N, Franks B, Horn D. Epidemiological features of invasive mold infections among solid organ transplant recipients: PATH Alliance ® registry analysis. Med Mycol. 2016;55:myw086. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27703022.

  9. Neofytos D, Fishman JA, Horn D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12:220–9.

    Article  CAS  PubMed  Google Scholar 

  10. Baker AW, Maziarz EK, Arnold CJ, et al. Invasive fungal infection after lung transplantation: epidemiology in the setting of antifungal prophylaxis. Clin Infect Dis. 2020;70:30–9.

    Article  PubMed  Google Scholar 

  11. Marinelli T, Pennington K, Hamandi B, et al. Epidemiology of candidemia in lung transplant recipients and risk factors for candidemia in the early post-transplant period in the absence of universal antifungal prophylaxis. Transpl Infect Dis. 2022;24:e13812.

  12. Verleden G, Vos G, van Raemdonck D. Pulmonary infection defense after lung transplantation: does airway ischaemia play a role? Curr Opin Organ Transplant. 2010;15:568–71.

    Article  PubMed  Google Scholar 

  13. Speich R, van der Bij W. Epidemiology and management of infections after lung transplantation. Clin Infect Dis. 2001;33:S58-65.

    Article  PubMed  Google Scholar 

  14. Murthy S, Gildea T, Machuzak M. Anastomotic airway complications after lung transplanation. Curr Opin Organ Transplant. 2010;15:582–7.

    Article  PubMed  Google Scholar 

  15. Issa NC, Fishman JA. Infectious Complications of antilymphocyte therapies in solid organ transplantation. Clin Infect Dis. 2009;48:772–786. Available at: https://doi.org/10.1086/597089.

  16. Goldfarb N, Avery R, Goormastic M, et al. Hypogammaglobulinemia in lung transplant recipients. Transplantation. 2001;71:242–6.

    Article  CAS  PubMed  Google Scholar 

  17. Laursen AL, Mogensen SC, Andersen HMK, Andersen PL, Ellermann-Eriksen S. The impact of CMV on the respiratory burst of macrophages in response to Pneumocystis carinii. Clin Exp Immunol. 2001;123:239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Phoompoung P, Perez Cortes Villalobos A, Jain S, Foroutan F, Orchanian-Cheff A, Husain S. Risk factors of invasive fungal infections in lung transplant recipients: a systematic review and meta-analysis. J Heart Lung Transplant. 2022;41:255–62.

    Article  PubMed  Google Scholar 

  19. Weight SS, Finlen Copeland CA, Derhovanessian A, et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. Am J Transplant. 2013;13:919–27.

    Google Scholar 

  20. Cahill BC, Hibbs JR, Savik K, et al. Aspergillus airway colonization and invasive disease after lung transplantation. Chest. 1997;112:1160–64.

  21. Husni RN, Gordon SM, Longworth DL, et al. Cytomegalovirus infection is a risk factor for invasive aspergillosis in lung transplant recipients. Clin Infect Dis. 1998;26:753–55.

  22. Andes DR, Safdar N, Baddley JW, et al. The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States : results of the Transplant- ­ Associated Infection Surveillance Network ( TRANSNET ). Transpl Infect Dis. 2016;18:921–31.

    Article  PubMed  Google Scholar 

  23. Singh N, Husain S. Aspergillus infections after lung transplantation: clinical differences in type of transplant and implications for management. J Heart Lung Transplant. 2003;22:258–66.

    Article  PubMed  Google Scholar 

  24. Herrera J, McNeil K, Higgins R, et al. Airway complications after lung transplantation: treatment and long-term outcomes. Ann Thorac Surg. 2001;71:989–93.

    Article  CAS  PubMed  Google Scholar 

  25. Mahajan A, Folch E, Khandhar SJ. Airway complications following lung transplantation: a comprehensive review. Chest. 2017;152:627–38.

    Article  PubMed  Google Scholar 

  26. McWilliams T, Williams T, Whitford H, Snell G. Surveillance bronchoscopy in lung transplant recipients: risk versus benefit. J Heart Lung Transplant. 2008;27:1203–9.

    Article  PubMed  Google Scholar 

  27. •• Peter Donnelly J, Chen SC, Kauffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71:1367–76. This paper reports on the updated consensus definitions for IFI from the EORTC and MSGERC.

    Article  PubMed  Google Scholar 

  28. • Lagrou K, Chen S, Masur H, et al. Pneumocystis jirovecii disease : basis for the revised EORTC / MSGERC invasive fungal disease definitions in individuals without human immunodeficiency virus. Clin Infect Dis. 2021;72:114–20. This paper provides rationale for the updated consensus definitions for IFI from the EORTC and MSGERC, specifically in regards to Pneumocystis jirovecii.

    Article  CAS  Google Scholar 

  29. Husain S, Mooney ML, Danziger-Isakov L, et al. A 2010 working formulation for the standardization of definitions of infections in cardiothoracic transplant recipients. J Heart Lung Transplant. 2011;30:361–74.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Horvarth J, Drummer S. The use of respiratory-tract cultures in the diagnosis of invasive pulmonary aspergillosis. Am J Med. 1996;100:171–178. Available at: https://doi.org/10.1016/S0002-9343(97)89455-7.

  31. • Hoenigl M, Prattes J, Spiess B, Wagner J, Prueller F, Raggam R. Performance of galactomannan, beta-d-glucan, Aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol. 2014;52:2039–45. This paper reported the performance of fungal culture, PCR and several fungal biomarkers when applied to BALF. The sensitivities for the non-culture based diagnostic methods were between 70 and 88%. Combining tests increased the sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Lass-Florl C, Resch G, Nachbaur D, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin Infect Dis. 2007;45:e101-104. This paper reported the performance of Aspergillus PCR and galactomannan when applied to tissue obtained using CT guided biopsy. The sensitivity/specificity of CT, Aspergillus PCR and galactomannan were 100%/50%, 100%/86% and 88%/94% repectively.

    Article  PubMed  Google Scholar 

  33. • Unterman A, Ishakian S, Geffen Y, et al. Routine comprehensive Aspergillus screening of bronchoalveolar lavage samples in lung transplant recipients. Clin Transplant. 2020;34:e13811. This paper compared BALF Aspergillus PCR, galactomannan and fungal culture and found that the former two detected cases of aspergillosis that were missed by false-negative fungal culture, but detected more cases of fungal colonization.

  34. Walsh T, Gamalestou MN, McGinnis M, Hayden R, Kontoyiannis D. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (Zygomycosis). Clin Infect Dis. 2012;54:S55–60.

    Article  PubMed  Google Scholar 

  35. Santos C, Paterson R, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol. 2010;108:375–85.

    Article  CAS  PubMed  Google Scholar 

  36. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;2013(13):788–99.

    Article  CAS  Google Scholar 

  37. Stevenson LG, Drake SK, Shea YR, Zelazny AMMP. Evaluation of matrix-assisted laser desorption ionization time-of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol. 2010;48:3482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shao J, Wan Z, Li R, Yu J. Species identification and delineation of pathogenic mucorales by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2018;56:e01886-e1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lau AF, Drake SK, Calhoun LB, Henderson CM ZA. Development of a clinically comprehensive database and a sim_ple procedure for identification of moulds from solid media by matrix assisted laser desorption ionization – time of flight mass spectrometry. J Clin Microbiol. 2013;51:828–34.

  40. Ranque S, Normand A-CCC, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clin_ical laboratory. Mycoses. 2013;57:135–40.

    Article  PubMed  CAS  Google Scholar 

  41. Becker PT, De BA, Martiny D, et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry : clinical evaluation of an extended reference spectra library St ephane. Med Mycol. 2014;52:826–34.

    Article  CAS  PubMed  Google Scholar 

  42. Latge J, Kobyashi H, Debeaupuis J, Diaquin M, Sarfati J, Wieruszeski J. Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun. 1994;62:5424–33.

  43. Husain S, Paterson D, Studer S, et al. Aspergillus galactomannan antigen in the bronchoalveolar lavage fluid for the diagnosis of invasive aspergillosis in lung transplant recipients. Transplantation. 2007;83:1330–6.

    Article  CAS  PubMed  Google Scholar 

  44. Pasqualotto A, Xavier M, Sanchez L, et al. Diagnosis of invasive aspergillosis in lung transplant recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation. 2010;90:306–11.

    Article  CAS  PubMed  Google Scholar 

  45. • Bhimji A, Bhaskaran A, Singer LG, et al. Aspergillus galactomannan detection in exhaled breath condensate compared to bronchoalveolar lavage fl uid for the diagnosis of invasive aspergillosis in immunocompromised patients. Clin Microbiol Infect. 2018;24:640–645. Available at: https://doi.org/10.1016/j.cmi.2017.09.018. This paper demonstrates that GM is detectable in EBC of LTs, however there was no correlations between optical density index values and invasive Aspergillosis.

  46. Xu C, Zhu C, Zhou M, Guo R, Yu Y. Aspergillus galactomannan detection in exhaled breath condensate compared to bronchoalveolar lavage fluid by Husain et al. Clin Microbiol Infect. 2018;24:2017–8.

    Article  Google Scholar 

  47. Hope W, Kruhlak M, Lyman C, et al. Pathogenesis of Aspergillus fumigatus and the Kinetics of Galactomannan in an In Vitro Model of Early Invasive Pulmonary Aspergillosis : implications for Antifungal Therapy. J Infect Dis. 2007;195:455–66

  48. Husain S, Kwak E, Obman A. Prospective assessment of Platelia Aspergillus galactomannan antigen for the diagnosis of invasive aspergillosis in lung transplant recipients. Am J Transplant. 2004;4.

  49. Pfeiffer C, Fine J, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;15:1417–27.

    Article  Google Scholar 

  50. • Linder KA, Kau CA, Miceli MH. Performance of aspergillus galactomannan lateral flow assay on bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis. J Fungi. 2020; 6:297. This paper reports that when applied to BALF, the Aspergillus GM-LFA has poor sensitivity but excellent specificity for proven/probable IPA.

  51. Xavier M, Pasqualotto A, Cardoso I, Severo L. Cross-reactivity of Paracoccidioides brasiliensis, Histoplasma capsulatum, and Cryptococcus species in the commercial platelia Aspergillus enzyme immunoassay. Clin Vaccine Immunol. 2009;16:132–3.

  52. Sulahian A, Touratier S, Ribaud P. False positive test for aspergillus antigenemia related to concomitant administration of piperacillin and tazobactam. N Engl J Med. 2003;349:2366–67.

  53. Aubry A, Porcher R, Bottero J, Touratier S, Leblanc T, Brethon B. Occurrence and kinetics of false-positive Aspergillus galactomannan test results following treatment with beta-lactam antibiotics in patients with hematological disorders. J. J Clin Microbiol. 2006;44:389–94.

  54. Vergidis R, Razonable R, Wheat L, Estes L, Caliendo A, Balden L. Reduction in false-positive aspergillus serum galactomannan enzyme immunoassay results associated with use of piperacillin-tazobactam in the United States. J Clin Microbiol. 2015;52:2199–201.

    Article  Google Scholar 

  55. Hansen J, Slechta E, Gates-Hollingsworth M. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol. 2013;20:52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Binnicker M, Jespersen D, Bestrom J, Rollins L. Comparison fo four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol. 2012;19:1988–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tadeo K, Nimwesiga A, Kwizera R. Evaluation of the diagnostic performance of a semiquantitative cryptococcal antigen point-of-care assay among HIV_Infected Persons with Cryptococcal Meningitis. J Clin Microbiol. 2021;59:30086021.

    Article  Google Scholar 

  58. McManus E, Bozdech M, Jones JM. Role of the latex agglutination test for cryptococcal antigen in diagnosing disseminated infections with Trichosporon beigelii. J Infect Dis. 1985;151:1167–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kabanda T, Siedner M, Klausner J, Muzoora C, Boulware D. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis. 2014;58:113–6.

    Article  CAS  PubMed  Google Scholar 

  60. Grinsell M, Weinhold L, Cutler J, Han Y, Kozel T. In vivo clear_ance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages. J Infect Dis. 2001;184:479–87.

    Article  CAS  PubMed  Google Scholar 

  61. Brouwer A, Teparrukkul P, Pinpraphaporn S, Al E. Baseline correlation and comparative kinetics of cerebrospinal fluid colony-forming unit counts and antigen titers in cryptococcal meningitis. J Infect Dis. 2005;192:681–4.

    Article  PubMed  Google Scholar 

  62. White S, Schmidt R, Walker B, Hanson K. (1->3)-Beta-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev. 2020;7:CD009833.

    PubMed  Google Scholar 

  63. Bhaskaran A, Kabbani D, Singer L, Prochnow T, Bhimji A, Rotstein C. (1,3) β-D-glucan in bronchoalveolar lavage of lung transplant recipients for the diagnosis of invasive pulmonary aspergillosis. Medcial Mycol. 2017;55:173–9.

    Article  CAS  Google Scholar 

  64. Alexander B, Smith P, Davis R, Perfect J, Reller L. The (1,3){beta}-D-glucan test as an aid to early diagnosis of invasive fungal infections following lung transplantation. J Clin Microbiol. 2010;48:4083–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mutschlechner W, Risslegger B, Willinger B, Hoenigl M, Bucher B, Eschertzhuber S. Bronchoalveolar lavage fluid (1,3)β-D-glucan for the diagnosis of invasive fungal infections in solid organ transplantation. Transplantation. 2015;99:e140–4.

    Article  CAS  PubMed  Google Scholar 

  66. • Del Corpo O, Butler-Laporte G, Sheppard D, Al E. Diagnostic accuracy of serum (1–3)-β-D-glucan for Pneumocystis jirovecii pneumonia: a systematic re_view and meta-analysis. Clin Microbiol Infect. 2020;26:1137–43. This systematic review and meta-analysis examining reports that in patients with a higher liklihood of PJP, BDG is neither sensitive enough to exclude PJP or specific enough to diagnose PJP.

    Article  PubMed  CAS  Google Scholar 

  67. Theel E, Doerm C. Point-counterpoint: β-d-Glucan testing is important for diagnosis of invasive fungal infections. J Clin Microbiol. 2013;51:3478–83.

  68. • Zeller I, Schabereiter-Gurtner C, Mihalits V, Selitsch B, Barousch W, Hirschi M. Detection of fungal pathogens by a new broad range real-time PCR assay targeting the fungal ITS2 region. J Med Microbiol. 2017;66:1383–92. This paper compares the use of a panfungal real-time PCR assay, which targets the ITS2 region of fungal DNA, to conventional fungal diagnostic methods applied to various clinical specimens from. The sensitivity and specificity of the PCR were 90.4% and specificity 79.2% respectively.

    Article  CAS  PubMed  Google Scholar 

  69. • Trubiano JA, Dennison AM, Morrissey CO, et al. Clinical utility of panfungal polymerase chain reaction for the diagnosis of invasive fungal disease : a single center experience. Med Mycol. 2016;54:138–46. This paper describes the role of panfungal PCR in diagnosis of IFIs. In culture negative/histopathology positive cases, the panfungal PCR identified a causative species in 35%, however with negative histopathology panfungal PCR identified a potential pathogen in only 12%.

    Article  CAS  PubMed  Google Scholar 

  70. Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of Targeted Fungal Sequencing for Culture- Independent Diagnosis of Invasive Fungal Disease. Clin Infect Dis. 2017;94304:2035–41.

    Article  CAS  Google Scholar 

  71. Bhimji A, Singer LG, Kumar D, et al. Feasibility of Detecting Fungal DNA in Exhaled Breath Condensate by the Luminex Multiplex xTAG Fungal PCR Assay in Lung transplant Recipients: A Pilot Study. J Heart Lung Transplant. 2016;35:S37. Available at: https://doi.org/10.1016/j.healun.2016.01.099.

  72. Luong M, Clancy CJ, Vadnerkar A, et al. Comparison of an aspergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalvelolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in lung transplant recipients. Clin Infect Dis. 2011;52:1218–26.

  73. • Chong G, van der Beek M, von dem Borne P, et al. PCR-based detection of Aspergillus fumigatus Cyp51A mutations on bronchoalveolar lavage: a multicentre validation of the AsperGenius assay®in 201 patients with haematological disease suspected for invasive aspergillosis. J Antimicrob Chemother. 2016;71:3528–35. This paper describes the diagnostic performance of a multiplex Aspergillus PCR which identifies clinically relevant Aspergillus species and 4 resistance-associated mutations.

    Article  CAS  PubMed  Google Scholar 

  74. Bernal-Martínez L, Gil H, Rivero-Menéndez O, Gago S, Cuenca-Estrella M, Mellado E. Development and validation of a high-resolution melting assay to detect azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2017;61:e01083-e1117.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mortensen K, Jensen R, Johansen H, et al. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol. 2011;49:2243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  76. White P, Backx M, Barnes R. Diagnosis and management of Pneumocystis jirovecii infection. Expert Rev Anti Infect Ther. 2017;15:435–47.

    Article  CAS  PubMed  Google Scholar 

  77. Alanio A, Hauser P, Lagrou K, Melchers W, Helweg-Larsen J, Matos O. ECIL guidelines for the diagnosis of Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother. 2016;71:2386–96.

  78. Lu Y, Ling G, Qiang C, Ming Q, Wu C, Wang K. PCR diagnosis of Pneumocystis pneumonia: a bivariate meta-analysis. J Clin Microbiol. 2011;49:4361–3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fan L, Lu H, Cheng K, Li H, Xu J. Evaluation of PCR in bronchoalveolar lavage fluid for diagnosis of Pneumocystis jirovecii pneumonia: a bi-variate meta-analysis and systematic review. PLoS ONE. 2013;8:e73099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Summah H, Zhu Y, Falagas M, Vouloumanou E, Qu J. Use of real-time polymerase chain reaction for the diagnosis of Pneumocystis pneumonia in immunocompromised patients: a meta-analysis. Chin Med J. 2013;126:1965–73.

    PubMed  Google Scholar 

  81. •• Fishman JA, Gans H, Practice ASTIDC of. Pneumocystis jiroveci in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019:e13587. Available at: https://doi.org/10.1111/ctr.13587. This paper is the most updated guidance from the American Society of Transplantation on diagnosis and management of Pneumocystis pneumonia.

  82. Damiani C, Le Gal S, Da Costa C, Virmaux M, Nevez G, Totet A. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D_glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization. J Clin Microbiol. 2013;51:3380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pfeiffer C, Samsa G, Schell W, Barth Reller L, Perfect J, Alexander B. Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol. 2011;49:2879–83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Avni T, Leibovici L, Paul M. PCR Diagnosis of Invasive Candidiasis : Systematic Review and Meta-Analysis. J Clin Microbiol. 2011;49:665–70.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mylonakis E, Clancy C, Ostrosky-Zeichner L, Garey K, et al. T2 Magnetic Resonance Assay for the Rapid Diagnosis of Candidemia in Whole Blood: A Clinical Trial. Clin Infect Dis. 2015;60:892–9.

    Article  CAS  PubMed  Google Scholar 

  86. Millon L, Scherer E, Rocchi S, Bellanger A. Molecular Strategies to Diagnose Mucormycosis. J Fungi. 2019;5:24.

  87. Lengerova M, Racil Z, Hrncirova K, et al. Rapid Detection and Identification of Mucormycetes in Bronchoalveolar Lavage Samples from Immunocompromised Patients with Pulmonary Infiltrates by Use of High-Resolution Melt Analysis. J Clin Microbiol. 2014;52:2824–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wang J, Zhang C, Lin J, Zhang L. Clinical diagnostic value of spiral CT in invasive pulmonary fungal infection. Exp Ther. 2019;17:4149–53.

    Google Scholar 

  89. Yeon Park S, Lim C, Lee S, et al. Computed tomography findings in invasive pulmonary aspergillosis in non-neutropenic transplant recipients and neutropenic patients, and their prognostic value. J Infect. 2011;63:447–56.

    Article  Google Scholar 

  90. Nam B, Kim T, Lee K, Kim T, Han J, Chung M. Pulmonary mucormycosis: serial morphologic changes on computed tomography correlate with clinical and pathologic findings. Eur Radiol. 2018;28:788–95.

    Article  PubMed  Google Scholar 

  91. Jung J, Kim M, Lee H. Comparison of computed tomographic findings in pulmonary mucormycosis and invasive pulmonary aspergillosis. Clin Microbiol Infect. 2015;21:e11–8.

    Article  Google Scholar 

  92. Vogel M, Vatlach M, Weissgerber P, et al. HRCT-features of Pneumocystis jiroveci pneumonia and their evolution before and after treatment in non-HIV immunocompromised patients. Eur J Radiol. 2012;81:1315–20.

    Article  CAS  PubMed  Google Scholar 

  93. Chou C, Chou H, Lin F, Tsai H, Yuan W, Chang S. Clinical Usefulness of HRCT in Assessing the Severity of Pneumocystis jirovecii Pneumonia: A Cross-sectional study. Medicine (Baltimore). 2015;94:e768.

  94. Roux A, Canet E, Valade S, et al. Pneumocystis jirovecii Pneumonia in patients with or without AIDS, France. Emerg Infect Dis. 2014;20:1490–97. 

  95. Marzolf G, Sabou M, Lannes B, Cotton F, Meyronet D, Galanaud D. Magnetic resonance imaging of cerebral aspergillosis: imaging and pathological correlations. PLoS One. 2016;11:e0152475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Thornton J. Covid-19: A&E visits in England fall by 25% in week after lockdown. BMJ. 2020; 369:m1401–m1401. Available at: https://doi.org/10.1136/bmj.m1401 NS -.

  97. Hot A, Maunoury C, Poiree S, Al E. Diagnostic contribution of positron emission tomography with [18F]fluorodeoxyglucose for invasive fungal infections. Clin Microbiol Infect. 2011;17:409–17.

  98. Kono M, Yamashita H, Kubota K, Al E. FDG PET imaging in Pneumocystis Pneumonia. Clin Nucl Med. 2015;40:679–81.

    Article  PubMed  Google Scholar 

  99. Nakazato T, Mihara A, Mihara Y, Al E. Pneumocystis jiroveci pneumonia detected by FDG-PET. Ann Hematol. 2010;89:839–40.

    Article  PubMed  Google Scholar 

  100. Xu B, Shi P, Wu H, Al E. Utility of FDG PET/CT in guiding antifungal therapy in acute leukemia patients with chronic disseminated candidiasis. Clin Nucl Med. 2010;35:567–70.

    Article  PubMed  Google Scholar 

  101. Wang S, Chen G, Luo D, Al E. 18F-FDG PET/CT and contrast-enhanced CT findings of pulmonary cryptococcosis. Eur J Radiol. 2017;89:140–8.

    Article  PubMed  Google Scholar 

  102. Wang J, Zeng Q. Dr. Hong Yu leads a team battling against the COVID-19 outbreak in Wuhan. Laparosc Endosc Robot Surg. 2020;3(2):56–7.

  103. Leroy-Freschini B, Treglia G, Argemi X, et al. F-FDG PET / CT for invasive fungal infection in immunocompromised patients. QJM An Int J Med. 2018;111:613–22.

    Article  CAS  Google Scholar 

  104. • Thornton CR. Molecular Imaging of Invasive Pulmonary Aspergillosis Using ImmunoPET / MRI : The Future Looks Bright. Front Microbiol. 2018;9. This review explores the use of molecular imaging for IPA and discusses the role of antibody-guided PET/MRI.

  105. Pan Z, Fu M, Zhang J, Zhou H, Fu H, Zhou J. Diagnostic accuracy of a novel lateral-flow device in invasive aspergillosis: a meta-analysis. J Med Microbiol. 2015;64:702–7.

    Article  CAS  PubMed  Google Scholar 

  106. Castillo C, Kauffman C, Zhai J, Jiang H, Agozino S, Miceli M. Testing the performance of a prototype lateral flow device using bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in high-risk patients. Mycoses. 2018;61:4–10.

    Article  CAS  PubMed  Google Scholar 

  107. Heldt S, Hoenigl M. Lateral flow assays for the diagnosis of invasive aspergillosis: current status. Curr Fungal Infect Rep. 2017;11:45–51.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Imai N, Nishi S, Yoshita K, et al. Pentraxin-3 expression in acute renal allograft rejection. Clin Transplant. 2012;26:25–31.

    Article  CAS  PubMed  Google Scholar 

  109. Biagi E, Col M, Migliavacca M. PTX3 as a potential novel tool for the diagnosis and monitoring of pulmonary fungal infections in immu_no-compromised pediatric patients. J Pediatr Hematol Oncol. 2008;30:881–5.

    Article  PubMed  Google Scholar 

  110. • Kabbani D, Bhaskaran A, Singer LG, et al. Pentraxin 3 levels in bronchoalveolar lavage fl uid of lung transplant recipients with invasive aspergillosis. J Heart Lung Transplant. 2022;36:973–979. Available at: https://doi.org/10.1016/j.healun.2017.04.007. This paper reports elevated PTX3, a pro-inflammatory marker, levels in BAL samples from LTs with IA compared to those without IA.

  111. Mauri T, Coppadoro A, Bombino M. Alveolar pentraxin 3 as an early marker of microbiologically confirmed pneumonia: a threshold-finding prospective observational study. Crit Care. 2014;18:562.

  112. Herrmann A. Volatiles–an interdisciplinary approach. Chem Biol Volatiles. 2010.

  113. Licht J, Grasemann H. Potential of the Electronic Nose for the Detection of Respiratory Diseases with and without Infection. Int J Mol Sci. 2020;21:9416.

    Article  CAS  PubMed Central  Google Scholar 

  114. Koo S, Thomas H, Daniels S, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59:1733–40.

  115. de Heer K, van der Schee M, Zwinderman K, et al. Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol. 2013;51:1490–5.

    Article  PubMed  PubMed Central  Google Scholar 

  116. de Heer K, Kok M, Fens N, et al. Detection of Airway Colonization by Aspergillus fumigatus by Use of Electronic Nose Technology in Patients with Cystic Fibrosis. J Clin Microbiol. 2016;54:569–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bhaskaran A, Mumtaz K, Husain S. Anti-aspergillus prophylaxis in lung transplantation: A systematic review and meta-analysis. Curr Infect Dis Rep. 2013;15:514–25.

    Article  PubMed  Google Scholar 

  118. Pilarczyk K, Haake N, Heckmann J, et al. Is universal antifungal prophylaxis mandatory in adults after lung transplantation? A review and meta-analysis of observational studies. Clin Transplant. 2016;30:1522–31.

    Article  CAS  PubMed  Google Scholar 

  119. Pennington KM, Baqir M, Erwin PJ, Razonable RR, Murad MH, Kennedy CC. Antifungal prophylaxis in lung transplant recipients: A systematic review and meta-analysis. Transpl Infect Dis. 2020;22:1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Marinelli.

Ethics declarations

Conflict of Interest

TM and SVH do not have any conflicts to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advances in Diagnosis of Invasive Fungal Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinelli, T., van Hal, S. The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients. Curr Fungal Infect Rep 16, 75–86 (2022). https://doi.org/10.1007/s12281-022-00433-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-022-00433-1

Keywords

Navigation