Skip to main content

Advertisement

Log in

Usefulness of Yeast Cell Counting and Lack of Clinical Correlation of the Antifungal Susceptibility Testing Results in Management of Aids-associated Cryptococcal Meningitis

  • Clinical Mycology Lab Issues (S Cordoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cryptococcal meningitis is one of the most seriously opportunistic infections in people living with HIV. We evaluated clinical and laboratorial features (minimum inhibitory concentrations for fluconazole, initial fungal burden in cerebrospinal fluid) and risk factors associated with in-hospital mortality.

Recent Findings

There is no good evidence for the use of minimum inhibitory concentrations for fluconazole in routine practice for the management of cryptococcosis patients. Counting yeast cells at cerebrospinal fluid can predict positive culture by not death.

Summary

Data from 46 cryptococcal meningitis patients were reviewed, retrospectively. Patients who presented yeast cell count greater than 400 yeast cells/μ in their initial cerebrospinal fluid sample were associated with higher mortality (p = 0.014); moreover, the yeast cell count is an easy and cheap assay, with high values possibly associated to poor prognosis. Additionally, we verified no significant differences between fluconazole susceptibility profile, molecular type, clinical presentation, cytological analyses, time to sterilize the cerebrospinal fluid, agent recovering out of central nervous system, previous diagnosis of cryptococcal meningitis or usage of fluconazole, and overall mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. GERMS-SA Annual Report 2016.

  2. Jarvis JN, Boulle A, Loyse A, et al. High ongoing burden of cryptococcal disease in Africa despite antiretroviral roll out. AIDS. 2009;23(9):1182–3. https://doi.org/10.1097/QAD.0b013e32832be0fc.

    Article  PubMed  Google Scholar 

  3. • Meyer W, Castañeda A, Jackson S, et al. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003:189–95 http://repositorio.unesp.br/handle/11449/67195. Accessed June 19, 2016. IberoAmerican molecular epidemiology of Cryptococcus.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48. https://doi.org/10.1016/j.fgb.2015.02.009Nomenclature consensus ofCryptococcusspecies.

    Article  CAS  PubMed  Google Scholar 

  5. • Kwon-Chung KJ, Bennett JE, Wickes BL, et al. The Case for Adopting the “Species Complex” Nomenclature for the Etiologic Agents of Cryptococcosis. Lorenz M, ed. mSphere. 2017;2(1). doi:https://doi.org/10.1128/mSphere.00357-16. Nomenclature consensus ofCryptococcusspecies.

  6. • Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17(8):873–81. https://doi.org/10.1016/S1473-3099(17)30243-8Global epidemiology of cryptococcal meningitis.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jarvis JN, Harrison TS. HIV-associated cryptococcal meningitis. Aids. 2007;21(16):2119–29 http://journals.lww.com/aidsonline/Citation/2007/10180/HIV_associated_cryptococcal_meningitis.1.aspx. Accessed 23 June 2016.

    Article  PubMed  Google Scholar 

  8. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23(4):525–30. https://doi.org/10.1097/QAD.0b013e328322ffac.

    Article  PubMed  Google Scholar 

  9. Lanjewar DN. The spectrum of clinical and pathological manifestations of AIDS in a consecutive series of 236 autopsied cases in Mumbai, India. Pathol Res Int. 2011;2011:1–12. https://doi.org/10.4061/2011/547618.

    Article  Google Scholar 

  10. Lortholary O, Poizat G, Zeller V, et al. Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. AIDS (London, England). 2006;20(17):2183–91. https://doi.org/10.1097/01.aids.0000252060.80704.68.

    Article  Google Scholar 

  11. Vidal JE, Penalva de Oliveira AC, Dauar RF, Boulware DR. Strategies to reduce mortality and morbidity due to AIDS-related cryptococcal meningitis in Latin America. Braz J Infect Dis. 2013;17(3):353–62. https://doi.org/10.1016/j.bjid.2012.10.020.

    Article  PubMed  PubMed Central  Google Scholar 

  12. de Oliveira RB, Atobe JH, Souza SA, de Castro Lima Santos DW. Epidemiology of invasive fungal infections in patients with acquired immunodeficiency syndrome at a reference hospital for infectious diseases in Brazil. Mycopathologia. 2014;178(1–2):71–8. https://doi.org/10.1007/s11046-014-9755-3.

    Article  PubMed  Google Scholar 

  13. Pappalardo MCSM, Szeszs MW, Martins MA, Baceti LB, Bonfietti LX, Purisco SU, et al. Susceptibility of clinical isolates of Cryptococcus neoformans to amphotericin B using time-kill methodology. Diagn Microbiol Infect Dis. 2009;64(2):146–51. https://doi.org/10.1016/j.diagmicrobio.2009.02.007.

    Article  CAS  PubMed  Google Scholar 

  14. • World Health Organization. Guidelines for the Diagnosis, Prevention and Management of Cryptococcal Disease in HIV-Infected Adults, Adolescents and Children: Supplement to the 2016 Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection.; 2018. http://www.ncbi.nlm.nih.gov/books/NBK531449/. Accessed 2 June 2019. Cryptococcal disease guideline from WHO.

  15. • Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291–322. https://doi.org/10.1086/649858Cryptococcal disease guideline from Infectious Diseases Society of America.

    Article  PubMed  Google Scholar 

  16. Brandt ME, Pfaller MA, Hajjeh RA, Hamill RJ, Pappas PG, Reingold AL, et al. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998. Antimicrob Agents Chemother. 2001;45(11):3065–9. https://doi.org/10.1128/AAC.45.11.3065-3069.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Armengou A, Porcar C, Mascaró J, García-Bragado F. Possible development of resistance to fluconazole during suppressive therapy for AIDS-associated cryptococcal meningitis. Clin Infect Dis. 1996;23(6):1337–8 http://cid.oxfordjournals.org/content/23/6/1337.2.short. Accessed June 19, 2016.

    Article  CAS  PubMed  Google Scholar 

  18. Berg J, Clancy CJ, Nguyen MH. The hidden danger of primary fluconazole prophylaxis for patients with AIDS. Clin Infect Dis. 1998;26(1):186–7 http://cid.oxfordjournals.org/content/26/1/186.2.short. Accessed June 19, 2016.

    Article  CAS  PubMed  Google Scholar 

  19. Dalhoff A, Ambrose PG, Mouton JW. A long journey from minimum inhibitory concentration testing to clinically predictive breakpoints: deterministic and probabilistic approaches in deriving breakpoints. Infection. 2009;37(4):296–305. https://doi.org/10.1007/s15010-009-7108-9.

    Article  CAS  PubMed  Google Scholar 

  20. Kahlmeter G. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J Antimicrob Chemother. 2003;52(2):145–8. https://doi.org/10.1093/jac/dkg312.

    Article  CAS  PubMed  Google Scholar 

  21. Chandenier J, Adou-Bryn KD, Douchet C, Sar B, Kombila M, Swinne D, et al. In vitro activity of amphotericin B, fluconazole and voriconazole against 162 Cryptococcus neoformans isolates from Africa and Cambodia. Eur J Clin Microbiol Infect Dis. 2004;23(6):506–8. https://doi.org/10.1007/s10096-004-1136-2.

    Article  CAS  PubMed  Google Scholar 

  22. Chong HS, Dagg R, Malik R, Chen S, Carter D. In vitro susceptibility of the yeast pathogen Cryptococcus to fluconazole and other azoles varies with molecular genotype. J Clin Microbiol. 2010;48(11):4115–20. https://doi.org/10.1128/JCM.01271-10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. De Bedout C, Ordóñez N, Gómez BL, et al. In vitro antifungal susceptibility of clinical isolates of Cryptococcus neoformans var. neoformans and C. neoformans var. gattii. Rev Iberoam Micol. 1999;16:36–9 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.380.1233&rep=rep1&type=pdf. Accessed June 23, 2016.

    PubMed  Google Scholar 

  24. Govender NP, Patel J, van Wyk M, Chiller TM, Lockhart SR, for the Group for Enteric, Respiratory and Meningeal Disease Surveillance in South Africa (GERMS-SA). Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates obtained through population-based surveillance in South Africa in 2002-2003 and 2007-2008. Antimicrob Agents Chemother. 2011;55(6):2606–11. https://doi.org/10.1128/AAC.00048-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Jones RN. Wild-type MIC distributions and epidemiologic cutoff values for fluconazole, posaconazole, and voriconazole when testing Cryptococcus neoformans as determined by the CLSI broth microdilution method. Diagn Microbiol Infect Dis. 2011;71(3):252–9. https://doi.org/10.1016/j.diagmicrobio.2011.07.007Epidemiological cutoff values forCryptococcus.

    Article  CAS  PubMed  Google Scholar 

  26. Thompson GR, Wiederhold NP, Fothergill AW, Vallor AC, Wickes BL, Patterson TF. Antifungal susceptibilities among different serotypes of Cryptococcus gattii and Cryptococcus neoformans. Antimicrob Agents Chemother. 2009;53(1):309–11. https://doi.org/10.1128/AAC.01216-08.

    Article  CAS  PubMed  Google Scholar 

  27. •• Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2012;56(11):5898–906. https://doi.org/10.1128/AAC.01115-12Epidemiological cutoff values forCryptococcus—international isolates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Dannaoui E, Abdul M, Arpin M, Michel-Nguyen A, Piens MA, Favel A, et al. Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with Cryptococcosis. Antimicrob Agents Chemother. 2006;50(7):2464–70. https://doi.org/10.1128/AAC.01520-05Antifungal susceptibility testing methods and cryptococcal meningitis outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Witt MD, Lewis RJ, Larsen RA, Milefchik EN, Leal MA, Haubrich RH, et al. Identification of patients with acute AIDS-associated cryptococcal meningitis who can be effectively treated with fluconazole: the role of antifungal susceptibility testing. Clin Infect Dis. 1996;22(2):322–8 http://cid.oxfordjournals.org/content/22/2/322.short. Accessed June 19, 2016.

    Article  CAS  PubMed  Google Scholar 

  30. • Aller AI, Martin-Mazuelos E, Lozano F, Gomez-Mateos J, Steele-Moore L, Holloway WJ, et al. Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. Antimicrob Agents Chemother. 2000;44(6):1544–8 http://aac.asm.org/content/44/6/1544.short. Accessed June 19, 2016. Antifungal susceptibility testing methods and cryptococcal meningitis outcome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Graybill JR, Sobel J, Saag M, et al. Diagnosis and management of increased intracranial pressure in patients with AIDS and cryptococcal meningitis. Clin Infect Dis. 2000;30(1):47–54 http://cid.oxfordjournals.org/content/30/1/47.short. Accessed June 19, 2016.

    Article  CAS  PubMed  Google Scholar 

  32. •• Vidal JE, Gerhardt J, Peixoto de Miranda ÉJ, et al. Role of quantitative CSF microscopy to predict culture status and outcome in HIV-associated cryptococcal meningitis in a Brazilian cohort. Diagn Microbiol Infect Dis. 2012;73(1):68–73. https://doi.org/10.1016/j.diagmicrobio.2012.01.014Role of quantitative cerebrospinal fluid microscopy to predict outcome.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Del Poeta M, Toffaletti DL, Rude TH, Dykstra CC, Heitman J, Perfect JR. Topoisomerase I is essential in Cryptococcus neoformans: role in pathobiology and as an antifungal target. Genetics. 1999;152(1):167–78 http://www.genetics.org/content/152/1/167.short. Accessed June 19, 2016.

    PubMed  PubMed Central  Google Scholar 

  34. Aoki FH, Imai T, Tanaka R, Mikami Y, Taguchi H, Nishimura NF, et al. New PCR primer pairs specific for Cryptococcus neoformans serotype A or B prepared on the basis of random amplified polymorphic DNA fingerprint pattern analyses. J Clin Microbiol. 1999;37(2):315–20 http://jcm.asm.org/content/37/2/315.short. Accessed June 19, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaturvedi S, Rodeghier B, Fan J, McClelland CM, Wickes BL, Chaturvedi V. Direct PCR of Cryptococcus neoformans MATalpha and MATa pheromones to determine mating type, ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies. J Clin Microbiol. 2000;38(5):2007–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, Fothergill A, Fuller J, Hagen F, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother. 2012;56(6):3107–13. https://doi.org/10.1128/AAC.06252-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saag MS, Powderly WG, Cloud GA, et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med. 1992;326(2):83–9. https://doi.org/10.1056/NEJM199201093260202.

    Article  CAS  PubMed  Google Scholar 

  38. Bicanic T, Muzoora C, Brouwer AE, et al. Independent association between rate of clearance of infection and clinical outcome of HIV-associated Cryptococcal meningitis: analysis of a combined cohort of 262 patients. Clin Infect Dis. 2009;49(5):702–9. https://doi.org/10.1086/604716.

    Article  CAS  PubMed  Google Scholar 

  39. Jarvis JN, Bicanic T, Loyse A, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin Infect Dis. 2014;58(5):736–45. https://doi.org/10.1093/cid/cit794.

    Article  PubMed  Google Scholar 

  40. Cerikçioğlu N. Mating types, sexual reproduction and ploidy in fungi: effects on virulence. Mikrobiyol Bul. 2009;43(3):507–13.

    PubMed  Google Scholar 

  41. Matsumoto MT, Fusco-Almeida AM, Baeza LC, M de Melhem SC, Medes-Giannini MJS. Genotyping, serotyping and determination of mating-type of Cryptococcus neoformans clinical isolates from São Paulo State, Brazil. Rev Inst Med Trop São Paulo. 2007;49(1):41–7.

    Article  PubMed  Google Scholar 

  42. Trilles L, M dos Lazéra S, Wanke B, et al. Regional pattern of the molecular types of Cryptococcus neoformans and Cryptococcus gattii in Brazil. Mem Inst Oswaldo Cruz. 2008;103(5):455–62 http://www.scielo.br/scielo.php?pid=S0074-02762008000500008&script=sci_arttext&tlng=es. Accessed June 19, 2016.

    Article  CAS  PubMed  Google Scholar 

  43. Souza LKH, Ode Fernandes FL, Kobayashi CCBA, et al. Antifungal susceptibilities of clinical and environmental isolates of Cryptococcus neoformans in Goiânia city, Goiás, Brazil. Rev Inst Med Trop São Paulo. 2005;47(5):253–6 doi:/S0036–46652005000500003.

    Article  PubMed  Google Scholar 

  44. Matos CS, de Souza AA, Oliveira NS, Barros TF. Microbiological characteristics of clinical isolates of Cryptococcus spp. in Bahia, Brazil: molecular types and antifungal susceptibilities. Eur J Clin Microbiol Infect Dis. 2012;31(7):1647–52. https://doi.org/10.1007/s10096-011-1488-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Favalessa OC, de Paula DAJ, Dutra V, Nakazato L, Tadano T, Lazera Mdos S, et al. Molecular typing and in vitro antifungal susceptibility of Cryptococcus spp from patients in Midwest Brazil. J Infect Dev Ctries. 2014;8(8):1037–43.

    Article  CAS  PubMed  Google Scholar 

  46. Day JN, Duong VA, Chau TTH, Hoang TN, Wolbers M. Relationship of susceptibility testing of Cryptococcus neoformans to survival and mycological cleareance in HIV associated cryptococcal meningitis. Mycoses. 2014:33–108.

  47. Turnidge J, Kahlmeter G, Kronvall G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12(5):418–25. https://doi.org/10.1111/j.1469-0691.2006.01377.x.

    Article  CAS  PubMed  Google Scholar 

  48. Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak MA, Lee-Yang W, et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother. 2006;50(4):1287–92. https://doi.org/10.1128/AAC.50.4.1287-1292.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwarz P, Dromer F, Lortholary O, Dannaoui E. Efficacy of amphotericin B in combination with flucytosine against flucytosine-susceptible or flucytosine-resistant isolates of Cryptococcus neoformans during disseminated murine Cryptococcosis. Antimicrob Agents Chemother. 2006;50(1):113–20. https://doi.org/10.1128/AAC.50.1.113-120.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schwarz P, Dromer F, Lortholary O, Dannaoui E. In vitro interaction of flucytosine with conventional and new antifungals against Cryptococcus neoformans clinical isolates. Antimicrob Agents Chemother. 2003;47(10):3361–4. https://doi.org/10.1128/AAC.47.10.3361-3364.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andes D. Pharmacokinetics and pharmacodynamics of antifungals. Infect Dis Clin N Am. 2006;20(3):679–97. https://doi.org/10.1016/j.idc.2006.06.007.

    Article  Google Scholar 

  52. Clancy CJ, Yu VL, Morris AJ, Snydman DR, Nguyen MH. Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother. 2005;49(8):3171–7. https://doi.org/10.1128/AAC.49.8.3171-3177.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, et al. Correlation of the MIC and Dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and Candidemia. Antimicrob Agents Chemother. 2007;51(10):3599–604. https://doi.org/10.1128/AAC.00296-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Jane Atobe and Simone Aparecida de Souza from the laboratory group of the IIER. Molecular-type standard strains were kindly provided by the Mycology Laboratory of the Instituto Nacional de Infectologia Evandro Chagas—Fundação Oswaldo Cruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar José Chagas.

Ethics declarations

Conflict of Interest

Oscar José Chagas, Renata Buccheri, Márcia de Souza Carvalho Melhem, Walderez Szeszs, Marilena dos Anjos Martins, Lidiane de Oliveira, Rosa Marcusso and Daniel Wagner Santos declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chagas, O.J., Buccheri, R., de Souza Carvalho Melhem, M. et al. Usefulness of Yeast Cell Counting and Lack of Clinical Correlation of the Antifungal Susceptibility Testing Results in Management of Aids-associated Cryptococcal Meningitis. Curr Fungal Infect Rep 14, 1–8 (2020). https://doi.org/10.1007/s12281-020-00368-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00368-5

Keywords

Navigation