Skip to main content

Advertisement

Log in

Neonatal Candidiasis: New Insights into an Old Problem at a Unique Host-Pathogen Interface

  • Fungal Genomics and Pathogenesis (S Shoham, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Candida species are the leading cause of invasive fungal infections in premature infants. Associated with substantial morbidity and mortality, these infections represent serious and sometimes catastrophic complications in the course of hospitalization of a preterm infant in the neonatal intensive care unit. Although virulence factors of Candida and the host defense mechanisms that are important in protection from candidiasis have been the subject of intensive study, considerably less is known about the features of this disease that are specific to premature neonates. As animal models for neonatal candidiasis have been developed, efforts to understand the similarities and differences of candidiasis in the neonatal host relative to other immunocompromised patients have begun to provide insights to these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vazquez JA, Sobel JD. Mucosal candidiasis. Infect Dis Clin N Am. 2002;16(4):793–820.

    Article  Google Scholar 

  2. Pappas PG. Invasive candidiasis. Infect Dis Clin N Am. 2006;20(3):485–506.

    Article  Google Scholar 

  3. Shoham S, Marwaha S. Invasive fungal infections in the ICU. J Intensive Care Med. 2010;25(2):78–92.

    Article  PubMed  Google Scholar 

  4. Rowen JL. Mucocutaneous candidiasis. Semin Perinatol. 2003;27(5):406–13.

    Article  PubMed  Google Scholar 

  5. Kelly MS, Benjamin Jr DK, Smith PB. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin Perinatol. 2015;42(1):105–17. viii-ix.

    Article  PubMed  Google Scholar 

  6. Benjamin Jr DK, Stoll BJ, Gantz MG, Walsh MC, Sanchez PJ, Das A, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126(4):e865–73.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2 Pt 1):285–91.

    Article  PubMed  Google Scholar 

  8. Benjamin Jr DK, Stoll BJ, Fanaroff AA, McDonald SA, Oh W, Higgins RD, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1):84–92.

    Article  PubMed  Google Scholar 

  9. Aliaga S, Clark RH, Laughon M, Walsh TJ, Hope WW, Benjamin DK, et al. Changes in the incidence of candidiasis in neonatal intensive care units. Pediatrics. 2014;133(2):236–42. A large retrospective review of > 700,000 infants over a 13 year period with 2,100 episodes of invasive candidiasis. The study documented a consistent and dramatic decrease in rates of invasive candidiasis over the last decade, as well as some of the changes in care that may have contributed to this trend.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chow BDW, Linden JR, Bliss JM. Candida parapsilosis and the neonate: epidemiology, virulence and host defense in a unique patient setting. Expert Rev Anti-Infect Ther. 2012;10(8):935–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Pammi M, Holland L, Butler G, Gacser A, Bliss JM. Candida parapsilosis is a significant neonatal pathogen: a systematic review and meta-analysis. Pediatr Infect Dis J. 2013;32(5):e206–16.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Benjamin Jr DK, Smith PB, Arrieta A, Castro L, Sanchez PJ, Kaufman D, et al. Safety and pharmacokinetics of repeat-dose micafungin in young infants. Clin Pharmacol Ther. 2010;87(1):93–9.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Saiman L, Ludington E, Dawson JD, Patterson JE, Rangel-Frausto S, Wiblin RT, et al. Risk factors for Candida species colonization of neonatal intensive care unit patients. Pediatr Infect Dis J. 2001;20(12):1119–24.

    Article  CAS  PubMed  Google Scholar 

  14. Saiman L, Ludington E, Pfaller M, Rangel-Frausto S, Wiblin RT, Dawson J, et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J. 2000;19(4):319–24.

    Article  CAS  PubMed  Google Scholar 

  15. Chow BDW, Reardon JR, Perry EO, Laforce-Nesbitt SS, Tucker R, Bliss JM. Expressed breast milk as a predictor of neonatal yeast colonization in an intensive care setting. J Pediatr Infect Dis. 2014;3(3):213–20.

    Google Scholar 

  16. Feja KN, Wu F, Roberts K, Loughrey M, Nesin M, Larson E, et al. Risk factors for candidemia in critically ill infants: a matched case-control study. J Pediatr. 2005;147(2):156–61.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lee JH, Hornik CP, Benjamin Jr DK, Herring AH, Clark RH, Cohen-Wolkowiez M, et al. Risk factors for invasive candidiasis in infants >1500 g birth weight. Pediatr Infect Dis J. 2013;32(3):222–6.

    PubMed Central  PubMed  Google Scholar 

  18. Steinbach WJ, Roilides E, Berman D, Hoffman JA, Groll AH, Bin-Hussain I, et al. Results from a prospective, international, epidemiologic study of invasive candidiasis in children and neonates. Pediatr Infect Dis J. 2012;31(12):1252–7.

    Article  PubMed  Google Scholar 

  19. Manzoni P, Farina D, Leonessa M, d'Oulx EA, Galletto P, Mostert M, et al. Risk factors for progression to invasive fungal infection in preterm neonates with fungal colonization. Pediatrics. 2006;118(6):2359–64.

    Article  PubMed  Google Scholar 

  20. Field LH, Pope LM, Cole GT, Guentzel MN, Berry LJ. Persistence and spread of Candida albicans after intragastric inoculation of infant mice. Infect Immun. 1981;31(2):783–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Pope LM, Cole GT, Guentzel MN, Berry LJ. Systemic and gastrointestinal candidiasis of infant mice after intragastric challenge. Infect Immun. 1979;25(2):702–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Trofa D, Soghier L, Long C, Nosanchuk JD, Gacser A, Goldman DL. A rat model of neonatal candidiasis demonstrates the importance of lipases as virulence factors for Candida albicans and Candida parapsilosis. Mycopathologia. 2011;172(3):169–78.

    Article  CAS  PubMed  Google Scholar 

  23. Tsai NY, Laforce-Nesbitt SS, Tucker R, Bliss JM. A murine model for disseminated candidiasis in neonates. Pediatr Res. 2011;69(3):189–93.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Vonk AG, Netea MG, van Krieken JH, van der Meer JW, Kullberg BJ. Delayed clearance of intraabdominal abscesses caused by Candida albicans in tumor necrosis factor-alpha- and lymphotoxin-alpha-deficient mice. J Infect Dis. 2002;186(12):1815–22.

    Article  CAS  PubMed  Google Scholar 

  25. Bendel CM. Colonization and epithelial adhesion in the pathogenesis of neonatal candidiasis. Semin Perinatol. 2003;27(5):357–64.

    Article  PubMed  Google Scholar 

  26. Bendel CM, Hess DJ, Garni RM, Henry-Stanley M, Wells CL. Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med. 2003;31(2):501–7.

    Article  PubMed  Google Scholar 

  27. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell. 2003;2(5):1053–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Falgier C, Kegley S, Podgorski H, Heisel T, Storey K, Bendel CM, et al. Candida species differ in their interactions with immature human gastrointestinal epithelial cells. Pediatr Res. 2011;69(5 Pt 1):384–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family - a sticky pursuit. Med Mycol. 2008;46(1):1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011;10(2):168–73.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, et al. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem. 2004;279(29):30480–9.

    Article  CAS  PubMed  Google Scholar 

  32. Laforce-Nesbitt SS, Sullivan MA, Hoyer LL, Bliss JM. Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p. FEMS Immunol Med Microbiol. 2008;54(2):195–202.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Coleman DA, Oh SH, Zhao X, Zhao H, Hutchins JT, Vernachio JH, et al. Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods. 2009;78(1):71–8.

  34. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, et al. Als3 Is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology. 2006;152(Pt 8):2287–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, et al. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 2008;4(11):e1000217.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cleary IA, Reinhard SM, Miller CL, Murdoch C, Thornhill MH, Lazzell AL, et al. Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Microbiology. 2011;157(Pt 6):1806–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fu Y, Phan QT, Luo G, Solis NV, Liu Y, Cormack BP, et al. Investigation of the function of Candida albicans Als3 by heterologous expression in Candida glabrata. Infect Immun. 2013;81(7):2528–35. Provided additional insight highlighting the importance of Als3 in disease by expressing the protein in C. glabrata , which has low virulence in mice and lacks a closely orthologous gene. Following intravenous injection, expression of Als3 led to increased fungal burden in brain and kidney relative to control yeast.

  39. Gacser A, Trofa D, Schafer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest. 2007;117(10):3049–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gacser A, Stehr F, Kroger C, Kredics L, Schafer W, Nosanchuk JD. Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun. 2007;75(10):4710–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Bliss JM, Basavegowda KP, Watson WJ, Sheikh AU, Ryan RM. Vertical and horizontal transmission of Candida albicans in very low birth weight infants using DNA fingerprinting techniques. Pediatr Infect Dis J. 2008;27(3):231–5.

    Article  PubMed  Google Scholar 

  42. Bliss JM, Wong AY, Bhak G, Laforce-Nesbitt SS, Taylor S, Tan S, et al. Candida virulence properties and adverse clinical outcomes in neonatal candidiasis. J Pediatr. 2012;161(3):441–447 e2. Utilized a large collection of clinical isolates from neonates with disseminated candidiasis to demonstrate that strains with higher virulence traints in vitro were associated with clinical outcomes in the patients from whom they were isolated.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol. 2014;35(7):299–310.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Destin KG, Linden JR, Laforce-Nesbitt SS, Bliss JM. Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis. Early Hum Dev. 2009;85:531–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu FT, Yang RY, Hsu DK. Galectins in acute and chronic inflammation. Ann N Y Acad Sci. 2012;1253:80–91.

    Article  CAS  PubMed  Google Scholar 

  46. Linden JR, Kunkel D, Laforce-Nesbitt SS, Bliss JM. The role of galectin-3 in phagocytosis of Candida albicans and Candida parapsilosis by human neutrophils. Cell Microbiol. 2013;15(7):1127–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. 2013;51(6):641–51. Reported that mice deficient in galectin-3 had more severe infections with either C. albicans or C. parapsilosis following infection via intravenous injection. Also noted that serum levels of galectin-3 in cord blood are lower than adult peripheral blood, suggesting that galectin-3 may have a role in neonatal susceptibility to candidiasis.

  48. Demmert M, Faust K, Bohlmann MK, Troger B, Gopel W, Herting E, et al. Galectin-3 in cord blood of term and preterm infants. Clin Exp Immunol. 2012;167(2):246–51. Incubated cord blood for 24 hours and measured galectin-3 concentration to find that expression increased with increasing gestational age and could be induced on exposure to Group B Streptococcus . These findings support a pro-inflammatory role for galectin-3 that may be attenuated by prematurity.

Download references

Acknowledgments

Work in the Bliss laboratory was supported by grants from the National Institute of General Medical Sciences (P20GM103537 and P20GM104317) of the National Institutes of Health and by funds from the Oh Zopfi Professorship for Pediatrics and Perinatal Research from Brown University and Women & Infants Hospital of Rhode Island.

Compliance with Ethics Guidelines

Conflict of Interest

Amanda B. Arsenault and Joseph M. Bliss declare no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Bliss.

Additional information

This article is part of the Topical Collection on Fungal Genomics and Pathogenesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenault, A.B., Bliss, J.M. Neonatal Candidiasis: New Insights into an Old Problem at a Unique Host-Pathogen Interface. Curr Fungal Infect Rep 9, 246–252 (2015). https://doi.org/10.1007/s12281-015-0238-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-015-0238-x

Keywords

Navigation