Skip to main content
Log in

Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Primary infections with the varicella-zoster virus (VZV) result in varicella, while latent reactivation leads to herpes zoster. Both varicella and zoster can be prevented by live attenuated vaccines. There have been reports suggesting that both clinical VZV strains and those in vaccine preparations are genetically polymorphic, containing mixtures of both wild-type and vaccine-type sequences at certain vaccine-specific sites. In this study, the genetic polymorphism of the VZV genome was examined by analyzing the frequencies of minor alleles at each nucleotide position. Next-generation sequencing of the clinical VZV strain YC02 passaged in an in vitro cell culture was used to identify genetically polymorphic sites (GPS), where the minor allele frequency (MAF) exceeded 5%. The number of GPS increased by 7.3-fold at high passages (p100) when compared to low passages (p17), although the average MAF remained similar. GPS were found in 6 open reading frames (ORFs) in p17, 35, and 54 ORFs in p60 and p100, respectively. GPS were found more frequently in the dispensable gene group than the essential gene group, but the average MAF was greater in the essential gene group. The most common two major/minor base pairs were A/g and T/c. GPS were found in all three passages at 16 positions, all located in the reiterated (R) region. The population diversity as measured by Shannon entropy increased in p60 and p100. However, the entropy remained unchanged in the R regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, A., Brodsky, L., and Andino, R. 2014. Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature 505, 686–690.

    Article  CAS  PubMed  Google Scholar 

  • Ajay, S.S., Parker, S.C., Abaan, H.O., Fajardo, K.V., and Margulies, E.H. 2011. Accurate and comprehensive sequencing of personal genomes. Genome Res. 21, 1498–1505.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andino, R. and Domingo, E. 2015. Viral quasispecies. Virology 479–480, 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Arbiza, J., Mirazo, S., and Fort, H. 2010. Viral quasispecies profiles as the result of the interplay of competition and cooperation. BMC Evol. Biol. 10, 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Callendret, B., Bukh, J., Eccleston, H.B., Heksch, R., Hasselschwert, D.L., Purcell, R.H., Hughes, A.L., and Walker, C.M. 2011. Transmission of clonal hepatitis C virus genomes reveals dominant but transitory role for CD8+ T cells in early viral evolution. J. Virol. 85, 11833–11845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, A., Jost, L., Hsieh, T.C., Ma, K.H., Sherwin, W.B., and Rollins, L.A. 2015. Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model. PLoS One 10, e0125471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Che, X., Oliver, S.L., Sommer, M.H., Rajamani, J., Reichelt, M., and Arvin, A.M. 2011. Identification and functional characterization of the Varicella zoster virus ORF11 gene product. Virology 412, 156–166.

    Article  CAS  PubMed  Google Scholar 

  • Ciota, A.T., Ngo, K.A., Lovelace, A.O., Payne, A.F., Zhou, Y., Shi, P.Y., and Kramer, L.D. 2007. Role of the mutant spectrum in adaptation and replication of West Nile virus. J. Gen. Virol. 88, 865–874.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J.I. and Seidel, K.E. 1994. Absence of varicella-zoster virus (VZV) glycoprotein V does not alter growth of VZV in vitro or sensitivity to heparin. J. Gen. Virol. 75, 3087–3093.

    Article  CAS  PubMed  Google Scholar 

  • Davison, A.J. and Scott, J.E. 1986. The complete DNA sequence of varicella-zoster virus. J. Gen. Virol. 67, 1759–1816.

    Article  CAS  PubMed  Google Scholar 

  • Depledge, D.P., Kundu, S., Jensen, N.J., Gray, E.R., Jones, M., Steinberg, S., Gershon, A., Kinchington, P.R., Schmid, D.S., Balloux, F., et al. 2014. Deep sequencing of viral genomes provides insight into the evolution and pathogenesis of varicella zoster virus and its vaccine in humans. Mol. Biol. Evol. 31, 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Depledge, D.P., Yamanishi, K., Gomi, Y., Gershon, A.A., and Breuer, J. 2016. Deep sequencing of distinct preparations of the live attenuated varicella-zoster virus vaccine reveals a conserved core of attenuating single-nucleotide polymorphisms. J. Virol. 90, 8698–8704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohm, J.C., Lottaz, C., Borodina, T., and Himmelbauer, H. 2008. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 36, e105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Domingo, E. and Holland, J.J. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51, 151–178.

    Article  CAS  PubMed  Google Scholar 

  • Domingo, E., Sheldon, J., and Perales, C. 2012. Viral quasispecies evolution. Microbiol. Mol. Biol. Rev. 76, 159–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, R.A. 1930. The genetic theory of natural selection. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Gershon, A.A. and Gershon, M.D. 2013. Pathogenesis and current approaches to control of varicella-zoster virus infections. Clin. Microbiol. Rev. 26, 728–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi, Y., Sunamachi, H., Mori, Y., Nagaike, K., Takahashi, M., and Yamanishi, K. 2002. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol. 76, 11447–11459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Motos, V., Jürgens, C., Ritter, B., Kropp, K.A., Durán, V., Larsen, O., Binz, A., Ouwendijk, W.J.D., Lenac Rovis, T., Jonjic, S., et al. 2017. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog. 13, e1006346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregori, J., Perales, C., Rodriguez-Frias, F., Esteban, J.I., Quer, J., and Domingo, E. 2016. Viral quasispecies complexity measures. Virology 493, 227–237.

    Article  CAS  PubMed  Google Scholar 

  • Hedrick, P.W. 2010. Genetics of populations. 4th edn, pp. 103–105. Jones and Bartlett Publishers.

    Google Scholar 

  • Iengar, P. 2012. An analysis of substitution, deletion and insertion mutations in cancer genes. Nucleic Acids Res. 40, 6401–6413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon, J.S., Won, Y.H., Kim, I.K., Ahn, J.H., Shin, O.S., Kim, J.H., and Lee, C.H. 2016. Analysis of single nucleotide polymorphism among Varicella-Zoster virus and identification of vaccine-specific sites. Virology 496, 277–286.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.C., Won, Y.H., Park, J.S., Jeon, J.S., Ahn, J.H., Song, M.J., Shin, O.S., and Lee, C.H. 2018. Vaccine-type mutations identified in Varicella zoster virus passaged in cell culture. Virus Res. 245, 62–68.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Li, H., Hughes, A.L., Bano, N., McArdle, S., Livingston, S., Deubner, H., McMahon, B.J., Townshend-Bulson, L., McMahan, R., Rosen, H.R., et al. 2011. Genetic diversity of near genome-wide hepatitis C virus sequences during chronic infection: evidence for protein structural conservation over time. PLoS One 6, e19562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liesegang, T.J. 1999. Varicella zoster viral disease. Mayo Clin. Proc. 74, 983–998.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, C.W. and Hughes, A.L. 2015. Within-host nucleotide diversity of virus populations: Insights from next-generation sequencing. Infect. Genet. Evol. 30, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Peters, G.A., Tyler, S.D., Carpenter, J.E., Jackson, W., Mori, Y., Arvin, A.M., and Grose, C. 2012. The attenuated genotype of varicella-zoster virus includes an ORF0 transitional stop codon mutation. J. Virol. 86, 10695–10703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlivan, M. and Breuer, J. 2014. Clinical and molecular aspects of the live attenuated Oka varicella vaccine. Rev. Med. Virol. 24, 254–273.

    Article  CAS  PubMed  Google Scholar 

  • Sauder, C.J., Vandenburgh, K.M., Iskow, R.C., Malik, T., Carbone, K.M., and Rubin, S.A. 2006. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity. Virology 350, 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Shirogane, Y., Watanabe, S., and Yanagi, Y. 2013. Cooperation: another mechanism of viral evolution. Trends Microbiol. 21, 320–324.

    Article  CAS  PubMed  Google Scholar 

  • Shirogane, Y., Watanabe, S., and Yanagi, Y. 2019. Cooperation between different variants: A unique potential for virus evolution. Virus Res. 264, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Sohn, Y.M., Park, C.Y., Hwang, K.K., Woo, G.J., and Park, S.Y. 1994. Safety and immunogenicity of live attenuated varicella virus vaccine (MAV/06 strain). J. Korean Pediatr. Soc. 37, 1405–1413.

    Google Scholar 

  • Takahashi, M., Otsuka, T., Okuno, Y., Asano, Y., and Yazaki, T. 1974. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 2, 1288–1290.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, S.D., Peters, G.A., Grose, C., Severini, A., Gray, M.J., Upton, C., and Tipples, G.A. 2007. Genomic cartography of varicella-zoster virus: a complete genome-based analysis of strain variability with implications for attenuation and phenotypic differences. Virology 359, 447–458.

    Article  CAS  PubMed  Google Scholar 

  • Vignuzzi, M., Stone, J.K., Arnold, J.J., Cameron, C.E., and Andino, R. 2006. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Wakeley, J. 1996. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol. Evol. 11, 158–162.

    Article  CAS  PubMed  Google Scholar 

  • Won, Y.H., Kim, J.I., Kim, Y.Y., and Lee, C.H. 2014. Characterization of the repeat sequences of Varicella-zoster virus. J. Bacteriol. Virol. 44, 326–335.

    Article  Google Scholar 

  • Zerboni, L., Sen, N., Oliver, S.L., and Arvin, A.M. 2014. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12, 197–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z. and Gerstein, M. 2003. Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res. 31, 5338–5348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a fund from the Green Cross Corp. We would like to thank Editage (http://www.editage.co.kr) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Hee Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, H.R., Kim, S.C., Kang, S.H. et al. Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture. J Microbiol. 57, 1033–1039 (2019). https://doi.org/10.1007/s12275-019-9429-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9429-4

Keywords

Navigation