Skip to main content
Log in

Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-positive, rod-shaped, alkalitolerant, and halophilic bacterium–designated as strain NKC3-5T–was isolated from kimchi that was collected from the Geumsan area in the Republic of Korea. Cells of isolated strain NKC3-5T were 0.5–0.7 μm wide and 1.4–2.8 μm long. The strain NKC3-5T could grow at up to 20.0% (w/v) NaCl (optimum 10%), pH 6.5–10.0 (optimum pH 9.0), and 25–40°C (optimum 35°C). The cells were able to reduce nitrate under aerobic conditions, which is the first report in the genus Salicibibacter. The genome size and genomic G + C content of strain NKC3-5T were 3,754,174 bp and 45.9 mol%, respectively; it contained 3,630 coding sequences, 16S rRNA genes (six 16S, five 5S, and five 23S), and 59 tRNA genes. Phylogenetic analysis based on 16S rRNA showed that strain NKC3-5T clustered with bacterium Salicibibacter kimchii NKC1-1T, with a similarity of 96.2–97.6%, but formed a distinct branch with other published species of the family Bacillaceae. In addition, OrthoANI value between strain NKC3-5T and Salicibibacter kimchii NKC1-1T was far lower than the species demarcation threshold. Using functional genome annotation, the result found that carbohydrate, amino acid, and vitamin metabolism related genes were highly distributed in the genome of strain NKC3-5T. Comparative genomic analysis revealed that strain NKC3-5T had 716 pan-genome orthologous groups (POGs), dominated with carbohydrate metabolism. Phylogenomic analysis based on the concatenated core POGs revealed that strain NKC3-5T was closely related to Salicibibacter kimchii. The predominant polar lipids were phosphatidylglycerol and two unidentified lipids. Anteiso-C15:0, iso-C17:0, anteiso-C17:0, and iso-C15:0 were the major cellular fatty acids, and menaquinone-7 was the major isoprenoid quinone present in strain NKC3-5T. Cell wall peptidoglycan analysis of strain NKC3-5T showed that meso-diaminopimelic acid was the diagnostic diamino acid. The phephenotypic, genomic, phylogenetic, and chemotaxonomic properties reveal that the strain represents a novel species of the genus Salicibibacter, for which the name Salicibibacter halophilus sp. nov. is proposed, with the type strain NKC3-5T (= KACC 21230T = JCM 33437T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    Article  Google Scholar 

  • Behera, P., Mahapatra, M., Seuylemezian, A., Vaishampayan, P., Ramana, V.V., Joseph, N., Joshi, A., Shouche, Y., Suar, M., Pattnaik, A.K., et al. 2018. Taxonomic description and draft genome of Pseudomonas sediminis sp. nov., isolated from the rhizospheric sediment of Phragmites karka. J. Microbiol. 56, 458–466.

    Article  CAS  Google Scholar 

  • Bousfield, G.R., Sugino, H., and Ward, D.N. 1985. Demonstration of a COOH-terminal extension on equine lutropin by means of a common acid-labile bond in equine lutropin and equine chorionic gonadotropin. J. Biol. Chem. 260, 9531–9533.

    CAS  PubMed  Google Scholar 

  • Chaudhari, N.M., Gupta, V.K., and Dutta, C. 2016. BPGA-an ultrafast pan-genome analysis pipeline. Sci. Rep. 6, 24373.

    Article  CAS  Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  Google Scholar 

  • Jang, J.Y., Oh, Y.J., Lim, S.K., Park, H.K., Lee, C., Kim, J.Y., Lee, M.A., and Choi, H.J. 2018. Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae, isolated from kimchi. J. Microbiol. 56, 880–885.

    Article  CAS  Google Scholar 

  • Kanehisa, M. and Goto, S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.

    Article  CAS  Google Scholar 

  • Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.

    Article  CAS  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  Google Scholar 

  • Lagesen, K., Hallin, P., Rodland, E.A., Staerfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108.

    Article  CAS  Google Scholar 

  • Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.

    Article  CAS  Google Scholar 

  • Mheen, T.I. and Kwon, T.W. 1984. Effect of temperature and salt concentration on Kimchi fermentation. Korean J. Food Sci. Technol. 16, 443–450.

    CAS  Google Scholar 

  • Nei, M. and Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, USA.

    Google Scholar 

  • Oh, Y.J., Jang, J.Y., Lim, S.K., Kwon, M.S., Lee, J., Kim, N., Shin, M.Y., Park, H.K., Seo, M.J., and Choi, H.J. 2017. Virgibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi. J. Microbiol. 55, 933–938.

    Article  CAS  Google Scholar 

  • Oh, Y.J., Lee, H.W., Lim, S.K., Kwon, M.S., Lee, J., Jang, J.Y., Lee, J.H., Park, H.W., Nam, Y.D., Seo, M.J., et al. 2016a. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable. Antonie van Leeuwenhoek 109, 869–876.

    Article  CAS  Google Scholar 

  • Oh, Y.J., Lee, H.W., Lim, S.K., Kwon, M.S., Lee, J., Jang, J.Y., Park, H.W., Nam, Y.D., Seo, M.J., and Choi, H.J. 2016b. Gracilibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi. J. Microbiol. 54, 588–593.

    Article  CAS  Google Scholar 

  • Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.

    Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Salzman, A.T., Fulton, S., Gordon, N., Meys, M., and Carberry, R. 1993. Development and execution of a biomolecule purification method. Am. Biotechnol. Lab. 11, 40–42.

    CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 20, 1–6.

    Google Scholar 

  • Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.

    Google Scholar 

  • Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

    Article  CAS  Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  Google Scholar 

  • Tindall, B.J., Tomlinson, G.A., and Hochstein, L.I. 1987. Polar lipid composition of a new halobacterium. Syst. Appl. Microbiol. 9, 6–8.

    Article  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  Google Scholar 

  • Zhao, Y., Wu, J., Yang, J., Sun, S., Xiao, J., and Yu, J. 2012. PGAP: pan-genomes analysis pipeline. Bioinformatics 28, 416–418.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the World Institute of Kimchi (KE1902-1), funded by the Ministry of Science and ICT, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak-Jong Choi.

Ethics declarations

The authors declare no financial conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.J., Kim, J.Y., Park, H.K. et al. Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi. J Microbiol. 57, 997–1002 (2019). https://doi.org/10.1007/s12275-019-9421-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9421-z

Keywords

Navigation