Skip to main content
Log in

Active-site and interface engineering of cathode materials for aqueous Zn—gas batteries

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable Zn—gas batteries are regarded as promising energy storage and conversion devices due to their high safety and inherent environmental friendliness. However, the energy efficiency and power density of Zn—gas batteries are restricted by the kinetically sluggish cathode reactions, such as oxygen evolution reaction (OER) during charging and oxygen reduction reaction (ORR)/carbon dioxide reduction reaction (CO2RR)/nitrogen reduction reaction (NRR)/nitric oxide reduction reaction (NORR) during discharge. In this review, battery configurations and fundamental reactions in Zn—gas batteries are first introduced, including Zn—air, Zn-CO2, Zn-N2, and Zn-NO batteries. Afterward, recent advances in active site engineering for enhancing the intrinsic catalytic activities of cathode catalysts are summarized. Subsequently, the structure and surface regulation strategies of cathode materials for optimizing the three-phase interface and improving the performance of Zn—gas batteries are discussed. Finally, some personal perspectives for the future development of Zn—gas batteries are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, C.; Li, J.; Zhou, Z.; Pan, Y. Q.; Yu, Z. X.; Pei, Z. X.; Zhao, S. L.; Wei, L.; Chen, Y. Rechargeable zinc—air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem 2021, 3, 100055.

    Article  CAS  Google Scholar 

  2. Zhao, S. Y.; Xia, D. W.; Li, M. H.; Cheng, D. Y.; Wang, K. L.; Meng, Y. S.; Chen, Z.; Bae, J. Self-healing and anti-CO2 hydrogels for flexible solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 12033–12041.

    Article  CAS  Google Scholar 

  3. Li, L. P.; Liu, W. Y.; Dong, H. Y.; Gui, Q. Y.; Hu, Z. Q.; Li, Y. Y.; Liu, J. P. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 2021, 33, 2004959.

    Article  CAS  Google Scholar 

  4. Xie, J. F.; Wang, Y. B. Recent development of CO2 electrochemistry from Li-CO2 batteries to Zn-CO2 batteries. Acc. Chem. Res. 2019, 52, 1721–1729.

    Article  CAS  Google Scholar 

  5. Wang, H.; Li, Z. J.; Li, Y.; Yang, B.; Chen, J.; Lei, L. C.; Wang, S. B.; Hou, Y. An exfoliated iron phosphorus trisulfide nanosheet with rich sulfur vacancy for efficient dinitrogen fixation and Zn-N2 battery. Nano Energy 2021, 81, 105613.

    Article  CAS  Google Scholar 

  6. Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

    CAS  Google Scholar 

  7. Wang, X. Z.; Liu, S.; Zhang, H.; Zhang, S. S.; Meng, G.; Liu, Q.; Sun, Z. Y.; Luo, J.; Liu, X. J. Polycrystalline SnSx nanofilm enables CO2 electroreduction to formate with high current density. Chem. Commun. 2022, 58, 7654–7657.

    Article  CAS  Google Scholar 

  8. Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

    Article  Google Scholar 

  9. Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X. J.; Zhang, S. S.; Luo, J.; Wang, X. Z.; Hu, G. Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. J. Alloys Compd. 2022, 922, 166113.

    Article  CAS  Google Scholar 

  10. Fu, G. L.; Li, W. W.; Zhang, J. Y.; Li, M. S.; Li, C. J.; Li, N.; He, Q.; Xi, S. B.; Qi, D. C.; MacManus-Driscoll, J. L. et al. Facilitating the deprotonation of OH to O through Fe4+-induced states in perovskite LaNiO3 enables a fast oxygen evolution reaction. Small 2021, 17, 2006930.

    Article  CAS  Google Scholar 

  11. Liu, J. N.; Zhao, C. X.; Ren, D.; Wang, J.; Zhang, R.; Wang, S. H.; Zhao, C.; Li, B. Q.; Zhang, Q. Preconstructing asymmetric interface in air cathodes for high-performance rechargeable Zn—air batteries. Adv. Mater. 2022, 34, 2109407.

    Article  CAS  Google Scholar 

  12. Qin, Y. J.; Han, X.; Li, Y. P.; Han, A. J.; Liu, W. X.; Xu, H. J.; Liu, J. F. Hollow mesoporous metal—organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal. 2020, 10, 5973–5978.

    Article  CAS  Google Scholar 

  13. Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

    Article  Google Scholar 

  14. Zhang, Q.; Zhang, S. S.; Luo, Y.; Liu, Q.; Luo, J.; Chu, P. K.; Liu, X. J. Preparation of high entropy alloys and application to catalytical water electrolysis. APL Mater. 2022, 10, 070701.

    Article  CAS  Google Scholar 

  15. Meng, L. X.; Li, L. Recent research progress on operational stability of metal oxide/sulfide photoanodes in photoelectrochemical cells. Nano Res. Energy 2022, 1, e9120020.

    Article  Google Scholar 

  16. Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res., in press, https://doi.org/10.1007/s12274-022-4747-y.

  17. Yang, Q.; Liu, W. X.; Wang, B. Q.; Zhang, W. N.; Zeng, X.; Zhang, C.; Qin, Y. J.; Sun, X. M.; Wu, T. P.; Liu, J. F. et al. Regulating the spatial distribution of metal nanoparticles within metal—organic frameworks to enhance catalytic efficiency. Nat. Commun. 2017, 8, 14429.

    Article  CAS  Google Scholar 

  18. Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal—organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

    Article  CAS  Google Scholar 

  19. Zheng, X. B.; Li, P.; Dou, S. X.; Sun, W. P.; Pan, H. C.; Wang, D. S.; Li, Y. D. Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy Environ. Sci. 2021, 14, 2809–2858.

    Article  CAS  Google Scholar 

  20. Tang, C.; Wang, H. F.; Zhang, Q. Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 2018, 51, 881–889.

    Article  CAS  Google Scholar 

  21. Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

    Article  CAS  Google Scholar 

  22. Deng, Y. P.; Liang, R. L.; Jiang, G. P.; Jiang, Y.; Yu, A. P.; Chen, Z. W. The current state of aqueous Zn-based rechargeable batteries. ACS Energy Lett. 2020, 5, 1665–1675.

    Article  CAS  Google Scholar 

  23. Zeng, X. H.; Hao, J. N.; Wang, Z. J.; Mao, J. F.; Guo, Z. P. Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 2019, 20, 410–437.

    Article  Google Scholar 

  24. Pei, Z. X. Symmetric is nonidentical: Operation history matters for Zn metal anode. Nano Res. Energy 2022, 1, e9120023.

    Article  Google Scholar 

  25. Liu, H. R.; Shi, S. R.; Wang, Z. H.; Han, Y. H.; Huang, W. Recent advances in metal-gas batteries with carbon-based nonprecious metal catalysts. Small 2022, 18, 2103747.

    Article  CAS  Google Scholar 

  26. Wang, Z.; Zhu, C.; Tan, H.; Liu, J.; Xu, L. L.; Zhang, Y. Q.; Liu, Y. P.; Zou, X. X.; Liu, Z.; Lu, X. H. Understanding the synergistic effects of cobalt single atoms and small nanoparticles: Enhancing oxygen reduction reaction catalytic activity and stability for zinc-air batteries. Adv. Funct. Mater. 2021, 31, 2104735.

    Article  CAS  Google Scholar 

  27. Zhao, Z.; Yuan, Z. K.; Fang, Z. S.; Jian, J. H.; Li, J.; Yang, M. J.; Mo, C. S.; Zhang, Y.; Hu, X. H.; Li, P. et al. In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn-air batteries. Adv. Sci. 2018, 5, 1800760.

    Article  Google Scholar 

  28. Jiang, H.; Gu, J. X.; Zheng, X. S.; Liu, M.; Qiu, X. Q.; Wang, L. B.; Li, W. Z.; Chen, Z. F.; Ji, X. B.; Li, J. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER, and HER. Energy Environ. Sci. 2019, 12, 322–333.

    Article  CAS  Google Scholar 

  29. Hu, T. T.; Jiang, Z. Q.; Fu, Z.; Jiang, Z. J. A NiFe/NiSe2 heterojunction bifunctional catalyst rich in oxygen vacancies introduced using dielectric barrier discharge plasma for liquid and flexible all-solid-state rechargeable Zn-air batteries. J. Mater. Chem. A 2022, 10, 8739–8750.

    Article  CAS  Google Scholar 

  30. Zhang, Z. M.; Liang, X. L.; Li, J. F.; Qian, J. M.; Liu, Y. G.; Yang, S. L.; Wang, Y.; Gao, D. Q.; Xue, D. S. Interfacial engineering of NiO/NiCo2O4 porous nanofibers as efficient bifunctional catalysts for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 21661–21669.

    Article  CAS  Google Scholar 

  31. Wang, Y. Y.; Li, Z. G.; Zhang, P.; Pan, Y.; Zhang, Y.; Cai, Q.; Silva, S. R. P.; Liu, J.; Zhang, G. X.; Sun, X. M. et al. Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy 2021, 87, 106147.

    Article  CAS  Google Scholar 

  32. Tang, K.; Hu, H. B.; Xiong, Y.; Chen, L.; Zhang, J. Y.; Yuan, C. Z.; Wu, M. Z. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc—air batteries. Angew. Chem., Int. Ed. 2022, 61, e202202671.

    Article  CAS  Google Scholar 

  33. Zheng, W. Z.; Wang, Y.; Shuai, L.; Wang, X. Y.; He, F.; Lei, C. J.; Li, Z. J.; Yang, B.; Lei, L. C.; Yuan, C. et al. Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants. Adv. Funct. Mater. 2021, 31, 2008146.

    Article  CAS  Google Scholar 

  34. Wang, T. T.; Sang, X. H.; Zheng, W. Z.; Yang, B.; Yao, S. Y.; Lei, C. J.; Li, Z. J.; He, Q. G.; Lu, J. G.; Lei, L. C. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and highperformance Zn-CO2 batteries. Adv. Mater. 2020, 32, 2002430.

    Article  CAS  Google Scholar 

  35. Hao, X. Q.; An, X. W.; Patil, A. M.; Wang, P. F.; Ma, X. L.; Du, X.; Hao, X. G.; Abudula, A.; Guan, G. Q. Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 3738–3747.

    Article  CAS  Google Scholar 

  36. Gao, S. S.; Liu, Y. F.; Xie, Z. Y.; Qiu, Y.; Zhuo, L. C.; Qin, Y. J.; Ren, J. Q.; Zhang, S. S.; Hu, G. Z.; Luo, J. et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries. Small Methods 2021, 5, 2001039.

    Article  CAS  Google Scholar 

  37. Teng, X.; Niu, Y. L.; Gong, S. Q.; Liu, X.; Chen, Z. F. Selective CO2 reduction to formate on heterostructured Sn/SnO2 nanoparticles promoted by carbon layer networks. J. Electrochem. 2022, 28, 2108441.

    Google Scholar 

  38. Ren, J. T.; Chen, L.; Liu, Y. P.; Yuan, Z. Y. Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn-N2 batteries. J. Mater. Chem. A 2021, 9, 11370–11380.

    Article  CAS  Google Scholar 

  39. Ren, J. T.; Chen, L.; Wang, H. Y.; Yuan, Z. Y. Aqueous rechargeable Zn-N2 battery assembled by bifunctional cobalt phosphate nanocrystals-loaded carbon nanosheets for simultaneous NH3 production and power generation. ACS Appl. Mater. Interfaces 2021, 13, 12106–12117.

    Article  CAS  Google Scholar 

  40. Lv, X. W.; Liu, Y. P.; Wang, Y. S.; Liu, X. L.; Yuan, Z. Y. Encapsulating vanadium nitride nanodots into N, S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Appl. Catal. B: -Environ. 2021, 280, 119434.

    Article  CAS  Google Scholar 

  41. Wang, H.; Si, J. C.; Zhang, T. Y.; Li, Y.; Yang, B.; Li, Z. J.; Chen, J.; Wen, Z. H.; Yuan, C.; Lei, L. C. et al. Exfoliated metallic niobium disulfate nanosheets for enhanced electrochemical ammonia synthesis and Zn-N2 battery. Appl. Catal. B: -Environ. 2020, 270, 118892.

    Article  CAS  Google Scholar 

  42. Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

    Article  CAS  Google Scholar 

  43. Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

    Article  CAS  Google Scholar 

  44. Mou, T.; Liang, J.; Ma, Z. Y.; Zhang, L. C.; Lin, Y. T.; Li, T. S.; Liu, Q.; Luo, Y. L.; Liu, Y.; Gao, S. Y. et al. High-efficiency electrohydrogenation of nitric oxide to ammonia on a Ni2P nanoarray under ambient conditions. J. Mater. Chem. A 2021, 9, 24268–24275.

    Article  CAS  Google Scholar 

  45. Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 2020, 10, 1903172.

    Article  CAS  Google Scholar 

  46. Wu, J. K.; Liu, B.; Fan, X. Y.; Ding, J.; Han, X. P.; Deng, Y. D.; Hu, W. B.; Zhong, C. Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes. Carbon Energy 2020, 2, 370–386.

    Article  CAS  Google Scholar 

  47. Zhang, R.; Wu, Z. X.; Huang, Z. D.; Guo, Y.; Zhang, S. C.; Zhao, Y. W.; Zhi, C. Y. Recent advances for Zn—gas batteries beyond Zn—air/oxygen battery. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.06.023.

  48. Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

    Article  CAS  Google Scholar 

  49. Lv, X. W.; Liu, X. L.; Gao, L. J.; Liu, Y. P.; Yuan, Z. Y. Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn-N2 aqueous batteries. J. Mater. Chem. A 2021, 9, 4026–4035.

    Article  CAS  Google Scholar 

  50. Jin, W.; Chen, J. P.; Liu, B.; Hu, J. G.; Wu, Z. X.; Cai, W. Q.; Fu, G. T. Oxygen vacancy-rich in-doped CoO/CoP heterostructure as an effective air cathode for rechargeable Zn—air batteries. Small 2019, 15, 1904210.

    Article  CAS  Google Scholar 

  51. Liu, X. F.; Tao, S.; Zhang, J. Z.; Zhu, Y.; Ma, R. L.; Lu, J. Ultrathin p—n type Cu2O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn-CO2 batteries. J. Mater. Chem. A 2021, 9, 26061–26068.

    Article  CAS  Google Scholar 

  52. Shu, X. X.; Yang, M. M.; Tan, D. X.; Hui, K. S.; Hui, K. N.; Zhang, J. Recent advances in the field of carbon-based cathode electrocatalysts for Zn-air batteries. Mater. Adv. 2021, 2, 96–114.

    Article  CAS  Google Scholar 

  53. Lee, J. S.; Tai Kim, S.; Cao, R. G.; Choi, N. S.; Liu, M. L.; Lee, K. T.; Cho, J. Metal—air batteries with high energy density: Li—air versus Zn—air. Adv. Energy Mater. 2011, 1, 34–50.

    Article  CAS  Google Scholar 

  54. Fu, G. T.; Tang, Y. W.; Lee, J. M. Recent advances in carbon-based bifunctional oxygen electrocatalysts for Zn-air batteries. ChemElectroChem 2018, 5, 1424–1434.

    Article  CAS  Google Scholar 

  55. Ma, N. G.; Li, N.; Wang, T. R.; Ma, X. Y.; Fan, J. Strain engineering in the oxygen reduction reaction and oxygen evolution reaction catalyzed by Pt-doped Ti2CF2. J. Mater. Chem. A 2022, 10, 1390–1401.

    Article  CAS  Google Scholar 

  56. Tao, H. B.; Zhang, J. M.; Chen, J. Z.; Zhang, L. P.; Xu, Y. H.; Chen, J. G.; Liu, B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 2019, 141, 13803–13811.

    Article  CAS  Google Scholar 

  57. Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

    Article  CAS  Google Scholar 

  58. Huang, Z. F.; Song, J. J.; Dou, S.; Li, X. G.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494–1518.

    Article  Google Scholar 

  59. Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.

    Article  CAS  Google Scholar 

  60. Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

    Article  CAS  Google Scholar 

  61. Yu, L.; Yi, Q. F.; Yang, X. K.; Chen, Y. An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries. Sci. China Mater. 2019, 62, 1251–1264.

    Article  CAS  Google Scholar 

  62. Luo, X.; Yang, M.; Song, W. Y.; Fang, Q.; Wei, X. Q.; Jiao, L.; Xu, W. Q.; Kang, Y. K.; Wang, H. J.; Wu, N. N. et al. Neutral Zn—air battery assembled with single-atom iridium catalysts for sensitive self-powered sensing system. Adv. Funct. Mater. 2021, 31, 2101193.

    Article  CAS  Google Scholar 

  63. Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review.. J. Power Sources 2017, 356, 225–244.

    Article  CAS  Google Scholar 

  64. Malko, D.; Kucernak, A.; Lopes, T. In situ electrochemical quantification of active sites in Fe-N/C non-precious metal catalysts. Nat. Commun. 2016, 7, 13285.

    Article  CAS  Google Scholar 

  65. Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. J. Phys. Chem. C 2015, 119, 25917–25928.

    Article  CAS  Google Scholar 

  66. Urbain, F.; Tang, P. Y.; Carretero, N. M.; Andreu, T.; Gerling, L. G.; Voz, C.; Arbiol, J.; Morante, J. R. A prototype reactor for highly selective solar-driven CO2 reduction to synthesis gas using nanosized earth-abundant catalysts and silicon photovoltaics. Energy Environ. Sci. 2017, 10, 2256–2266.

    Article  CAS  Google Scholar 

  67. Wang, X. Y.; Xie, J. F.; Arsalan Ghausi, M.; Lv, J. Q.; Huang, Y. Y.; Wu, M. X.; Wang, Y. B.; Yao, J. N. Rechargeable Zn-CO2 electrochemical cells mimicking two-step photosynthesis. Adv. Mater. 2019, 31, 1807807.

    Article  Google Scholar 

  68. Gao, S. S.; Jin, M. M.; Sun, J. Q.; Liu, X. J.; Zhang, S. S.; Li, H. Y.; Luo, J.; Sun, X. P. Coralloid Au enables high-performance Zn-CO2 battery and self-driven CO production. J. Mater. Chem. A 2021, 9, 21024–21031.

    Article  CAS  Google Scholar 

  69. Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

    Article  Google Scholar 

  70. Yang, M. S.; Sun, J. Q.; Qin, Y. J.; Yang, H.; Zhang, S. S.; Liu, X. J.; Luo, J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 2022, 65, 536–542.

    Article  CAS  Google Scholar 

  71. Zhang, S. L.; Sun, L.; Fan, Q. N.; Zhang, F. L.; Wang, Z. J.; Zou, J. S.; Zhao, S. Y.; Mao, J.; Guo, Z. P. Challenges and prospects of lithium-CO2 batteries. Nano Res. Energy 2022, 1, e9120001.

    Article  Google Scholar 

  72. Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed SnΔ+ sites. Adv. Mater. 2019, 31, 1808135.

    Article  Google Scholar 

  73. Chen, L.; Tang, C.; Zheng, Y.; Skúlason, E.; Jiao, Y. C3 production from CO2 reduction by concerted *CO trimerization on a single-atom alloy catalyst. J. Mater. Chem. A 2022, 10, 5998–6006.

    Article  CAS  Google Scholar 

  74. Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

    Article  CAS  Google Scholar 

  75. Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

    Article  CAS  Google Scholar 

  76. Fetrow, C. J.; Carugati, C.; Zhou, X. D.; Wei, S. Y. Electrochemistry of metal-CO2 batteries: Opportunities and challenges. Energy Storage Mater. 2022, 45, 911–933.

    Article  Google Scholar 

  77. Ma, J. L.; Bao, D.; Shi, M. M.; Yan, J. M.; Zhang, X. B. Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2017, 2, 525–532.

    Article  CAS  Google Scholar 

  78. Xue, C.; Zhou, X. R.; Li, X. H.; Yang, N.; Xin, X.; Wang, Y. S.; Zhang, W. N.; Wu, J. S.; Liu, W. J.; Huo, F. W. Rational synthesis and regulation of hollow structural materials for electrocatalytic nitrogen reduction reaction. Adv. Sci. 2022, 9, 2104183.

    Article  CAS  Google Scholar 

  79. Liu, D.; Chen, M. P.; Du, X. Y.; Ai, H. Q.; Lo, K. H.; Wang, S. P.; Chen, S.; Xing, G. C.; Wang, X. S.; Pan, H. Development of electrocatalysts for efficient nitrogen reduction reaction under ambient condition. Adv. Funct. Mater. 2020, 31, 2008983.

    Article  Google Scholar 

  80. Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.

    Article  CAS  Google Scholar 

  81. Li, Z. R.; Ma, Z. Y.; Liang, J.; Ren, Y. C.; Li, T. S.; Xu, S. R.; Liu, Q.; Li, N.; Tang, B.; Liu, Y. et al. MnO2 nanoarray with oxygen vacancies: An efficient catalyst for NO electroreduction to NH3 at ambient conditions. Mater. Today Phys. 2022, 22, 100586.

    Article  CAS  Google Scholar 

  82. Niu, H.; Zhang, Z. F.; Wang, X. T.; Wan, X. H.; Kuai, C. G.; Guo, Y. Z. A feasible strategy for identifying single-atom catalysts toward electrochemical NO-to-NH3 conversion. Small 2021, 17, 2102396.

    Article  CAS  Google Scholar 

  83. Liang, J.; Liu, Q.; Alshehri, A. A. Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

    Article  Google Scholar 

  84. Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

    Article  CAS  Google Scholar 

  85. Ren, Z. B.; Zhang, H. N.; Wang, S. H.; Huang, B. B.; Dai, Y.; Wei, W. Nitric oxide reduction reaction for efficient ammonia synthesis on topological nodal-line semimetal Cu2Si monolayer. J. Mater. Chem. A 2022, 10, 8568–8577.

    Article  CAS  Google Scholar 

  86. Wu, J.; Yu, Y. X. A theoretical descriptor for screening efficient NO reduction electrocatalysts from transition-metal atoms on N-doped BP monolayer. J. Colloid Interface Sci. 2022, 623, 432–444.

    Article  CAS  Google Scholar 

  87. Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

    Article  CAS  Google Scholar 

  88. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  89. Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

    Article  CAS  Google Scholar 

  90. Ding, S. P.; Hülsey, M. J.; Pérez-Ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897–2929.

    Article  CAS  Google Scholar 

  91. Qin, R. X.; Liu, P. X.; Fu, G.; Zheng, N. F. Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2018, 2, 1700286.

    Article  Google Scholar 

  92. Liu, H. X.; Fu, J. T.; Li, H. Y.; Sun, J. Q.; Liu, X. J.; Qiu, Y.; Peng, X. Y.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Appl. Catal. B: -Environ. 2022, 306, 121029.

    Article  CAS  Google Scholar 

  93. Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2020, 11, 509–516.

    Article  Google Scholar 

  94. Yang, M. S.; Liu, S.; Sun, J. Q.; Jin, M. M.; Fu, R.; Zhang, S. S.; Li, H. Y.; Sun, Z. Y.; Luo, J.; Liu, X. J. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B: -Environ. 2022, 307, 121145.

    Article  CAS  Google Scholar 

  95. Peng, X. Y.; Bao, H. H.; Sun, J. Q.; Mao, Z. Y.; Qiu, Y.; Mo, Z. J.; Zhuo, L. C.; Zhang, S. S.; Luo, J.; Liu, X. J. Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale 2021, 13, 7134–7139.

    Article  CAS  Google Scholar 

  96. Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

    Article  CAS  Google Scholar 

  97. Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

    Article  CAS  Google Scholar 

  98. Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater. 2018, 17, 1033–1039.

    Article  CAS  Google Scholar 

  99. Jin, M. M.; Liu, W.; Sun, J. Q.; Wang, X. Z.; Zhang, S. S.; Luo, J.; Liu, X. J. Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 2022, 15, 5842–5847.

    Article  CAS  Google Scholar 

  100. Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Qiao, J. L.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

    Google Scholar 

  101. Peng, X. Y.; Mi, Y. Y.; Liu, X. J.; Sun, J. Q.; Qiu, Y.; Zhang, S. S.; Ke, X. X.; Wang, X. Z.; Luo, J. Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. J. Mater. Chem. A 2022, 10, 6134–6145.

    Article  CAS  Google Scholar 

  102. Qi, D. F.; Liu, Y. F.; Hu, M.; Peng, X. Y.; Qiu, Y.; Zhang, S. S.; Liu, W. W.; Li, H. Y.; Hu, G. Z.; Zhuo, L. C. et al. Engineering atomic sites via adjacent dual-metal sub-nanoclusters for efficient oxygen reduction reaction and Zn-air battery. Small 2020, 16, 2004855.

    Article  CAS  Google Scholar 

  103. Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble-metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

    Article  CAS  Google Scholar 

  104. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  105. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-Level modulation of electronic density at cobalt single-atom sites derived from metal—organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  106. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Cnrbon Energy, in press, https://doi.org/10.1002/cey2.194.

  107. Wang, Y.; Tang, Y. J.; Zhou, K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119.

    Article  CAS  Google Scholar 

  108. Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of singleatom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.

    Article  CAS  Google Scholar 

  109. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    Article  CAS  Google Scholar 

  110. Zhu, C. Z.; Shi, Q. R.; Xu, B. Z.; Fu, S. F.; Wan, G.; Yang, C.; Yao, S. Y.; Song, J. H.; Zhou, H.; Du, D. et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater. 2018, 8, 1801956.

    Article  Google Scholar 

  111. Xiao, M. L.; Xing, Z. H.; Jin, Z.; Liu, C. P.; Ge, J. J.; Zhu, J. B.; Wang, Y.; Zhao, X.; Chen, Z. W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 2020, 32, 2004900.

    Article  CAS  Google Scholar 

  112. Xie, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

    Article  CAS  Google Scholar 

  113. Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

    Article  CAS  Google Scholar 

  114. Yan, L.; Xie, L. Y.; Wu, X. L.; Qian, M. Y.; Chen, J. R.; Zhong, Y. J.; Hu, Y. Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy 2021, 3, 856–865.

    Article  CAS  Google Scholar 

  115. Ma, S. H.; Han, Z.; Leng, K.; Liu, X. J.; Wang, Y.; Qu, Y. T.; Bai, J. B. Ionic exchange of metal-organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small 2020, 16, 2001384.

    Article  CAS  Google Scholar 

  116. Niu, W. J.; Sun, Q. Q.; He, J. Z.; Chen, J. L.; Gu, B. N.; Liu, M. J.; Chung, C. C.; Wu, Y. Z.; Chueh, Y. L. Zeolitic imidazolate framework-derived copper single atom anchored on nitrogen-doped porous carbon as a highly efficient electrocatalyst for the oxygen reduction reaction toward Zn-air battery. Chem. Mater. 2022, 34, 4104–4114.

    Article  CAS  Google Scholar 

  117. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  118. Lin, L.; Ni, Y. X.; Shang, L.; Sun, H. X.; Zhang, Q.; Zhang, W.; Yan, Z. H.; Zhao, Q.; Chen, J. Atomic-level modulation-induced electron redistribution in Co coordination polymers elucidates the oxygen reduction mechanism. ACS Catal. 2022, 12, 7531–7540.

    Article  CAS  Google Scholar 

  119. He, T.; Chen, Y.; Liu, Q. M.; Lu, B. Z.; Song, X. W.; Liu, H. T.; Liu, M.; Liu, Y. N.; Zhang, Y.; Ouyang, X. P. et al. Theory-guided regulation of FeN4 spin state by neighboring Cu atoms for enhanced oxygen reduction electrocatalysis in flexible metal—air batteries. Angew. Chem., Int. Ed. 2022, 61, e202201007.

    Article  CAS  Google Scholar 

  120. Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual singleatom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.

    Article  Google Scholar 

  121. Wang, D.; Xu, H.; Yang, P. X.; Lu, X. Y.; Ma, J. Y.; Li, R. P.; Xiao, L. H.; Zhang, J. Q.; An, M. Z. Fe-N4 and Co-N4 dual sites for boosting oxygen electroreduction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 13678–13687.

    Article  CAS  Google Scholar 

  122. Xu, J.; Lai, S.; Qi, D.; Hu, M.; Peng, X.; Liu, Y.; Liu, W.; Hu, G.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis.. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  123. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  124. Zhu, M. Z.; Zhao, C.; Liu, X. K.; Wang, X. L.; Zhou, F. Y.; Wang, J.; Hu, Y. M.; Zhao, Y. F.; Yao, T.; Yang, L. M. et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal. 2021, 11, 3923–3929.

    Article  CAS  Google Scholar 

  125. Jing, H. Y; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  126. Zhu, X. F.; Tan, X.; Wu, K. H.; Haw, S. C.; Pao, C. W.; Su, B. J.; Jiang, J. J.; Smith, S. C.; Chen, J. M.; Amal, R. et al. Intrinsic ORR activity enhancement of Pt atomic sites by engineering the d-band center via local coordination tuning. Angew. Chem., Int. Ed. 2021, 60, 21911–21917.

    Article  CAS  Google Scholar 

  127. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  128. Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.

    Article  CAS  Google Scholar 

  129. Zhang, Q. R.; Kumar, P.; Zhu, X. F.; Daiyan, R.; Bedford, N. M.; Wu, K. H.; Han, Z. J.; Zhang, T. R.; Amal, R.; Lu, X. Y. Electronically modified atomic sites within a multicomponent Co/Cu composite for efficient oxygen electroreduction. Adv. Energy Mater. 2021, 11, 2100303.

    Article  CAS  Google Scholar 

  130. Ni, W. P.; Liu, Z. X.; Zhang, Y.; Ma, C.; Deng, H. Q.; Zhang, S. G.; Wang, S. Y. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site. Adv. Mater. 2021, 33, 2003238.

    Article  CAS  Google Scholar 

  131. Zheng, W. Z.; Chen, F.; Zeng, Q.; Li, Z. J.; Yang, B.; Lei, L. C.; Zhang, Q. H.; He, F.; Wu, X. L.; Hou, Y. A universal principle to accurately synthesize atomically dispersed metal-N4 sites for CO2 electroreduction. Nano-Micro Lett. 2020, 12, 108.

    Article  CAS  Google Scholar 

  132. Liu, S.; Jin, M. M.; Sun, J. Q.; Qin, Y. J.; Gao, S. S.; Chen, Y.; Zhang, S. S.; Luo, J.; Liu, X. J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chem. Eng. J. 2022, 437, 135294.

    Article  CAS  Google Scholar 

  133. Zhang, Y.; Jiao, L.; Yang, W. J.; Xie, C. F.; Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  134. Zheng, W. Z.; Yang, J.; Chen, H. Q.; Hou, Y.; Wang, Q.; Gu, M.; He, F.; Xia, Y.; Xia, Z.; Li, Z. J. et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

    Article  CAS  Google Scholar 

  135. Pan, Y.; Lin, R.; Chen, Y. J.; Liu, S. J.; Zhu, W.; Cao, X.; Chen, W. X.; Wu, K. L.; Cheong, W. C.; Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    Article  CAS  Google Scholar 

  136. Chen, J. Y.; Li, Z. J.; Wang, X. Y.; Sang, X. H.; Zheng, S. X.; Liu, S. J.; Yang, B.; Zhang, Q. H.; Lei, L. C.; Dai, L. M. et al. Promoting CO2 electroreduction kinetics on atomically dispersed monovalent Zn1 sites by rationally engineering proton-feeding centers. Angew. Chem., Int. Ed. 2022, 61, e202111683.

    CAS  Google Scholar 

  137. Zeng, Z. P.; Gan, L. Y.; Bin Yang, H.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

    Article  CAS  Google Scholar 

  138. Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.

    Article  CAS  Google Scholar 

  139. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    Article  CAS  Google Scholar 

  140. Gu, Y.; Xi, B. J.; Tian, W. Z.; Zhang, H.; Fu, Q.; Xiong, S. L. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts. Adv. Mater. 2021, 33, 2100429.

    Article  CAS  Google Scholar 

  141. Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

    Article  CAS  Google Scholar 

  142. Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

    Article  CAS  Google Scholar 

  143. Lv, P.; Wu, D. H.; He, B. L.; Li, X.; Zhu, R.; Tang, G.; Lu, Z. S.; Ma, D. W.; Jia, Y. An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO3, NO2 and NO to NH3. J. Mater. Chem. A 2022, 10, 9707–9716.

    Article  CAS  Google Scholar 

  144. Sun, P. F.; Wang, W. L.; Zhao, X.; Dang, J. S. Defective h-BN sheet embedded atomic metals as highly active and selective electrocatalysts for NH3 fabrication via NO reduction. Phys. Chem. Chem. Phys. 2020, 22, 22627–22634.

    Article  CAS  Google Scholar 

  145. Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

    Article  CAS  Google Scholar 

  146. Tian, L.; Li, Z.; Xu, X. N.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470.

    Article  CAS  Google Scholar 

  147. Lv, X. W.; Xu, W. S.; Tian, W. W.; Wang, H. Y.; Yuan, Z. Y. Activity promotion of core and shell in multifunctional core-shell Co2P@NC electrocatalyst by secondary metal doping for water electrolysis and Zn-air batteries. Small 2021, 17, 2101856.

    Article  CAS  Google Scholar 

  148. Gan, Y. H.; Cui, M. L.; Dai, X. P.; Ye, Y.; Nie, F.; Ren, Z. T.; Yin, X. L.; Wu, B. Q.; Cao, Y. H.; Cai, R. et al. Mn-doping induced electronic modulation and rich oxygen vacancies on vertically grown NiFe2O4 nanosheet array for synergistically triggering oxygen evolution reaction. Nano Res. 2022, 15, 3940–3945.

    Article  CAS  Google Scholar 

  149. Hao, A.; Wan, X.; Liu, X. F.; Yu, R. H.; Shui, J. L. Inorganic microporous membranes for hydrogen separation: Challenges and solutions. Nano Res. Energy 2022, 1, e9120013.

    Article  Google Scholar 

  150. Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

    Article  CAS  Google Scholar 

  151. Zhang, H.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Luo, J.; Liu, X. J. Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics 2022, 28, 3927–3934.

    Article  CAS  Google Scholar 

  152. Balaghi, S. E.; Triana, C. A.; Patzke, G. R. Molybdenum-doped manganese oxide as a highly efficient and economical water oxidation catalyst. ACS Catal. 2020, 10, 2074–2087.

    Article  CAS  Google Scholar 

  153. Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Yang, Y.; Luo, M. C.; Huang, Y. R.; Sun, Y. J.; Chao, Y. G.; Yang, W. X.; Yang, W. W. et al. Lavender-like ga-doped Pt3Co nanowires for highly stable and active electrocatalysis. ACS Catal. 2020, 10, 3018–3026.

    Article  CAS  Google Scholar 

  154. Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

    Article  CAS  Google Scholar 

  155. Zhou, Y.; Sun, S. N.; Song, J. J.; Xi, S. B.; Chen, B.; Du, Y. H.; Fisher, A. C.; Cheng, F. Y.; Wang, X.; Zhang, H. et al. Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 2018, 30, 1802912.

    Article  Google Scholar 

  156. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  CAS  Google Scholar 

  157. Rao, Y.; Chen, S.; Yue, Q.; Kang, Y. J. Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for long-lasting and flexible rechargeable Zn-air batteries. ACS Catal. 2021, 11, 8097–8103.

    Article  CAS  Google Scholar 

  158. Jin, H. Y.; Liu, X.; Chen, S. M.; Vasileff, A.; Li, L. Q.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S. Z. Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Lett. 2019, 4, 805–810.

    Article  CAS  Google Scholar 

  159. Ran, J.; Wang, T.; Zhang, J.; Liu, Y.; Xu, C.; Xi, S.; Gao, D. Modulation of electronics of oxide perovskites by sulfur doping for electrocatalysis in rechargeable Zn-air batteries. Chem. Mater. 2020, 32, 3439–3446.

    Article  CAS  Google Scholar 

  160. Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

    Article  Google Scholar 

  161. Chen, S.; Zhao, L. L.; Ma, J. Z.; Wang, Y. Q.; Dai, L. M.; Zhang, J. T. Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries. Nano Energy 2019, 60, 536–544.

    Article  CAS  Google Scholar 

  162. Hu, C. G.; Dai, L. M. Doping of carbon materials for metal-free electrocatalysis. Adv. Mater. 2019, 31, 1804672.

    Article  Google Scholar 

  163. Ren, Q.; Wang, H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 2018, 5, 1700515.

    Article  Google Scholar 

  164. Arafat, Y.; Azhar, M. R.; Zhong, Y. J.; Tadé, M. O.; Shao, Z. P. Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Mater. Res. Bull. 2021, 140, 111315.

    Article  CAS  Google Scholar 

  165. Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z. P.; Wang, S. Y.; Ruoff, R. S.; Qu, L. T. Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: Mono-doping and Co-doping. Adv. Mater. 2019, 31, 1805121.

    Article  Google Scholar 

  166. Yang, H. B.; Miao, J.; Hung, S.-F.; Chen, J.; Tao, H. B.; Wang, X.; Zhang, L.; Chen, R.; Gao, J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metalfree bifunctional electrocatalyst. Sci. Adv. 2016, 2, 1501122.

    Article  Google Scholar 

  167. Van Tam, T.; Kang, S. G.; Kim, M. H.; Lee, S. G.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn—air batteries and overall water splitting. Adv. Energy Mater. 2019, 9, 1900945.

    Google Scholar 

  168. Wei, P.; Li, X. G.; He, Z. M.; Sun, X. P.; Liang, Q. R.; Wang, Z. Y.; Fang, C.; Li, Q.; Yang, H.; Han, J. et al. Porous N, B Co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn—air batteries. Chem. Eng. J. 2021, 422, 130134.

    Article  CAS  Google Scholar 

  169. Guo, Y. B.; Yao, S.; Gao, L. X.; Chen, A.; Jiao, M. G.; Cui, H. J.; Zhou, Z. Boosting bifunctional electrocatalytic activity in S and N Co-doped carbon nanosheets for high-efficiency Zn—air batteries. J. Mater. Chem. A 2020, 8, 4386–4395.

    Article  CAS  Google Scholar 

  170. Wang, Y. X.; Xu, N. N.; He, R. N.; Peng, L. W.; Cai, D. Q.; Qiao, J. L. Large-scale defect-engineering tailored tri-doped graphene as a metal-free bifunctional catalyst for superior electrocatalytic oxygen reaction in rechargeable Zn-air battery. Appl. Catal. B: — Environ. 2021, 285, 119811.

    Article  CAS  Google Scholar 

  171. Yang, W. X.; Zhang, Y. L.; Liu, X. J.; Chen, L. L.; Liu, M. C.; Jia, J. B. Polymerization-dissolution strategy to prepare Fe, N, S tri-doped carbon nanostructures for Zn—air batteries. Carbon 2019, 147, 83–89.

    Article  CAS  Google Scholar 

  172. Zhao, Z. H.; Xia, Z. H. Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 2016, 6, 1553–1558.

    Article  CAS  Google Scholar 

  173. Liu, T. F.; Ali, S.; Lian, Z.; Si, C. W.; Su, D. S.; Li, B. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: The decisive role of the bonding configuration of phosphorus. J. Mater. Chem. A 2018, 6, 19998–20004.

    Article  CAS  Google Scholar 

  174. Chen, S. Y.; Li, X. Q.; Kao, C. W.; Luo, T.; Chen, K. J.; Fu, J. W.; Ma, C.; Li, H. M.; Li, M.; Chan, T. S. et al. Unveiling the protonfeeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202206233.

    CAS  Google Scholar 

  175. Chen, C. J.; Sun, X. F.; Yan, X. P.; Wu, Y. H.; Liu, H. Z.; Zhu, Q. G.; Bediako, B. B. A.; Han, B. X. Boosting CO2 electroreduction on N, P-co-doped carbon aerogels. Angew. Chem., Int. Ed. 2020, 59, 11123–11129.

    Article  CAS  Google Scholar 

  176. Yang, H. P.; Wu, Y.; Lin, Q.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X.; Lin, Z. Q. Composition tailoring via N and S Co-doping and structure tuning by constructing hierarchical pores: Metal-free catalysts for high-performance electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 15476–15480.

    Article  CAS  Google Scholar 

  177. Zhao, Y. F.; Pei, Z. H.; Lu, X. F.; Luan, D. Y.; Wang, X.; Lou, X. W. Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catal. 2022, 2, 1480–1493.

    Article  Google Scholar 

  178. Ai, C. Z.; Vegge, T.; Hansen, H. A. Metal-doped PdH (111) catalysts for CO2 reduction. ChemSusChem 2022, 15, e202200008.

    Article  CAS  Google Scholar 

  179. Bai, X. W.; Shi, L.; Li, Q.; Ling, C. Y.; Ouyang, Y. X.; Wang, S. Y.; Wang, J. L. Synergistic effect of metal doping and tethered ligand promoted high-selectivity conversion of CO2 to C2 oxygenates at ultra-low potential. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12203.

  180. Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.

    Article  CAS  Google Scholar 

  181. Guo, J. J.; Tadesse Tsega, T.; Ul Islam, I.; Iqbal, A.; Zai, J. T.; Qian, X. F. Fe doping promoted electrocatalytic N2 reduction reaction of 2H MoS2. Chin. Chem. Lett. 2020, 31, 2487–2490.

    Article  CAS  Google Scholar 

  182. Wang, T.; Xia, L.; Yang, J. J.; Wang, H. B.; Fang, W. H.; Chen, H. Y.; Tang, D. P.; Asiri, A. M.; Luo, Y. L.; Cui, G. L. et al. Electrocatalytic N2-to-NH3 conversion using oxygen-doped graphene: Experimental and theoretical studies. Chem. Commun. 2019, 55, 7502–7505.

    Article  CAS  Google Scholar 

  183. Wu, T. T.; Li, P. P.; Wang, H. B.; Zhao, R. B.; Zhou, Q.; Kong, W. H.; Liu, M. L.; Zhang, Y. Y.; Sun, X. P.; Gong, F. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N2-to-NH3 fixation under ambient conditions. Chem. Commun. 2019, 55, 2684–2687.

    Article  CAS  Google Scholar 

  184. Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.

    Article  CAS  Google Scholar 

  185. Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.

    Article  CAS  Google Scholar 

  186. Zhang, L. C.; Zhou, Q.; Liang, J.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Gong, F. et al. Enhancing electrocatalytic NO reduction to NH3 by the CoS nanosheet with sulfur vacancies. Inorg. Chem. 2022, 61, 8096–8102.

    Article  CAS  Google Scholar 

  187. Wu, Q.; Wang, H.; Shen, S. Y.; Huang, B. B.; Dai, Y.; Ma, Y. D. Efficient nitric oxide reduction to ammonia on a metal-free electrocatalyst. J. Mater. Chem. A 2021, 9, 5434–5441.

    Article  CAS  Google Scholar 

  188. Luo, M. H.; Sun, W. P.; Xu, B. B.; Pan, H. G.; Jiang, Y. Z. Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2021, 11, 2002762.

    Article  CAS  Google Scholar 

  189. Pei, Z. X.; Ding, L. Y.; Wang, C.; Meng, Q. Q.; Yuan, Z. W.; Zhou, Z.; Zhao, S. L.; Chen, Y. Make it stereoscopic: Interfacial design for full-temperature adaptive flexible zinc-air batteries. Energy Environ. Sci. 2021, 14, 4926–4935.

    Article  CAS  Google Scholar 

  190. Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

    Article  CAS  Google Scholar 

  191. Xiao, Y.; Shen, C. Transition-metal borides (MBenes) as new high-efficiency catalysts for nitric oxide electroreduction to ammonia by a high-throughput approach. Small 2021, 17, 2100776.

    Article  CAS  Google Scholar 

  192. Liu, S.; Wang, L.; Yang, H.; Gao, S. S.; Liu, Y. F.; Zhang, S. S.; Chen, Y.; Liu, X. J.; Luo, J. Nitrogen-doped carbon polyhedrons confined Fe-P nanocrystals as high-efficiency bifunctional catalysts for aqueous Zn-CO2 batteries. Small 2022, 18, 2104965.

    Article  CAS  Google Scholar 

  193. Quan, Q.; Zhang, Y. X.; Wang, F.; Bu, X. M.; Wang, W.; Meng, Y.; Xie, P. S.; Chen, D.; Wang, W. J.; Li, D. J. et al. Topochemical domain engineering to construct 2D mosaic heterostructure with internal electric field for high-performance overall water splitting. Nano Energy 2022, 101, 107566.

    Article  CAS  Google Scholar 

  194. Pan, S. Y.; Yu, X. X.; Ling, Y.; Yang, Z. H. Stable and efficient hydrogen evolution reaction catalyzed by NiO-Rh2P heterostructure electrocatalyst. Catal. Commun. 2022, 163, 106404.

    Article  CAS  Google Scholar 

  195. Zhao, G. Q.; Li, P.; Cheng, N. Y.; Dou, S. X.; Sun, W. P. An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: Breaking the scaling relation, stabilizing iridium(V), and beyond. Adv. Mater. 2020, 32, 2000872.

    Article  CAS  Google Scholar 

  196. Wang, X. K.; Zhan, G. M.; Wang, Y. R.; Zhang, Y.; Zhou, J.; Xu, R.; Gai, H. Y.; Wang, H. L.; Jiang, H. Q.; Huang, M. H. Engineering core—shell Co9S8/Co nanoparticles on reduced graphene oxide: Efficient bifunctional Mott—Schottky electrocatalysts in neutral rechargeable Zn—air batteries. J. Energy Chem. 2022, 68, 113–123.

    Article  CAS  Google Scholar 

  197. Lu, Q.; Zou, X. H.; Bu, Y. F.; Liao, K. M.; Zhou, W.; Shao, Z. P. A controllable dual interface engineering concept for rational design of efficient bifunctional electrocatalyst for zinc-air batteries. Small 2022, 18, 2105604.

    Article  CAS  Google Scholar 

  198. An, L.; Zhang, Z. Y.; Feng, J. R.; Lv, F.; Li, Y. X.; Wang, R.; Lu, M.; Gupta, R. B.; Xi, P. X.; Zhang, S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc—air battery with neutral aqueous electrolyte. J. Am. Chem. Soc. 2018, 140, 17624–17631.

    Article  CAS  Google Scholar 

  199. Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.

    Article  CAS  Google Scholar 

  200. Song, J. N.; Chen, Y.; Huang, H. J.; Wang, J. J.; Huang, S. C.; Liao, Y. F.; Fetohi, A. E.; Hu, F.; Chen, H. Y.; Li, L. L. et al. Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery. Adv. Sci. 2022, 9, 2104522.

    Article  CAS  Google Scholar 

  201. Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125160.

    Article  CAS  Google Scholar 

  202. Zhang, Y. N.; Shi, W. P.; Bo, L. L.; Shen, Y. X.; Ji, X. C.; Xia, L. C.; Guan, X. L.; Wang, Y. X.; Tong, J. H. Electrospinning construction of heterostructural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn—air batteries and water splitting. Chem. Eng. J. 2022, 431, 134188.

    Article  CAS  Google Scholar 

  203. Sun, Z. H.; Wang, Y. K.; Zhang, L. B.; Wu, H.; Jin, Y. C.; Li, Y. H.; Shi, Y. C.; Zhu, T. X.; Mao, H.; Liu, J. M. et al. Simultaneously realizing rapid electron transfer and mass transport in Jellyfish-like Mott—Schottky nanoreactors for oxygen reduction reaction. Adv. Funct. Mater. 2020, 30, 1910482.

    Article  CAS  Google Scholar 

  204. Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem., Int. Ed. 2021, 60, 25741–25745.

    Article  CAS  Google Scholar 

  205. Yang, H.; Wang, B.; Kou, S.; Lu, G.; Liu, Z. Mott—Schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

    Article  CAS  Google Scholar 

  206. Wang, N.; Ning, S. L.; Yu, X. L.; Chen, D.; Li, Z. L.; Xu, J. C.; Meng, H.; Zhao, D. K.; Li, L. G.; Liu, Q. M. et al. Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott-Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc-air batteries. Appl. Catal. B: -Environ. 2022, 302, 120838.

    Article  CAS  Google Scholar 

  207. Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn—air batteries. eScience, in press, https://doi.org/10.1016/j.ecci.0222.05.001.

  208. Liu, W. X.; Yu, L. H.; Yin, R. L.; Xu, X. L.; Feng, J. X.; Jiang, X.; Zheng, D.; Gao, X. L.; Gao, X. B.; Que, W. B. et al. Non-3d metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.

    Article  CAS  Google Scholar 

  209. Ma, D. D.; Han, S. G.; Cao, C. S.; Wei, W. B.; Li, X. F.; Chen, B.; Wu, X. T.; Zhu, Q. L. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ. Sci. 2021, 11, 1544–1552.

    Article  Google Scholar 

  210. Han, S. G.; Zhang, M.; Fu, Z. H.; Zheng, L. R.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. Enzyme-inspired microenvironment engineering of a single-molecular heterojunction for promoting concerted electrochemical CO2 reduction. Adv. Mater., in press, https://doi.org/10.1002/adma.202202830.

  211. Wang, X. J.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. W. Nanoporous intermetallic Pd3Bi for efficient electrochemical nitrogen reduction. Adv. Mater. 2021, 33, 2007733.

    Article  CAS  Google Scholar 

  212. Liu, Y.; Zhu, X. R.; Zhang, Q. H.; Tang, T.; Zhang, Y.; Gu, L.; Li, Y. F.; Bao, J. C.; Dai, Z. H.; Hu, J. S. Engineering Mo/Mo2C/MoC hetero-interfaces for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 8920–8926.

    Article  CAS  Google Scholar 

  213. Hu, X. L.; Yang, T. X.; Yang, Z. G.; Li, Z. Y.; Wang, R. H.; Li, M.; Huang, G. S.; Jiang, B.; Xu, C. H.; Pan, F. S. Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting. J. Mater. Sci. Technol. 2022, 115, 19–28.

    Article  Google Scholar 

  214. Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B: -Environ. 2020, 265, 118559.

    Article  CAS  Google Scholar 

  215. Liu, Y. T.; Chen, X. X.; Yu, J. Y.; Ding, B. Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 58, 18903–18907.

    Article  CAS  Google Scholar 

  216. Meng, G.; Wei, T. R.; Liu, W. J.; Li, W. B.; Zhang, S. S.; Liu, W. X.; Liu, Q.; Bao, H. H.; Luo, J.; Liu, X. J. NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chem. Commun. 2022, 58, 8097–8100.

    Article  CAS  Google Scholar 

  217. Feng, J. X.; Zheng, D.; Gao, X. L.; Que, W. B.; Shi, W. H.; Liu, W. X.; Wu, F. F.; Cao, X. H. Three-dimensional ordered porous carbon for energy conversion and storage applications. Front. Energy Res. 2020, 8, 210.

    Article  CAS  Google Scholar 

  218. Sun, F. Z.; Wang, G.; Ding, Y. Q.; Wang, C.; Yuan, B. B.; Lin, Y. Q. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584.

    Article  Google Scholar 

  219. Liu, W. X.; Feng, J. X.; Yin, R. L.; Ni, Y. F.; Zheng, D.; Que, W. B.; Niu, X. X.; Dai, X. J.; Shi, W. H.; Wu, F. F. et al. Tailoring oxygenated groups of monolithic cobalt-nitrogen-carbon frameworks for highly efficient hydrogen peroxide production in acidic media. Chem. Eng. J. 2022, 430, 132990.

    Article  CAS  Google Scholar 

  220. Meng, F. L.; Zhong, H. X.; Bao, D.; Yan, J. M.; Zhang, X. B. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 2016, 138, 10226–10231.

    Article  CAS  Google Scholar 

  221. Lee, D. U.; Choi, J. Y.; Feng, K.; Park, H. W.; Chen, Z. W. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc—air batteries. Adv. Energy Mater. 2014, 4, 1301389.

    Article  Google Scholar 

  222. Song, J. N.; Yu, D. S.; Wu, X. L.; Xie, D. Y.; Sun, Y.; Vishniakov, P.; Hu, F.; Li, L. L.; Li, C. S.; Yu. Maximov, M. Y. et al. Interfacial coupling porous cobalt nitride nanosheets array with N-doped carbon as robust trifunctional electrocatalysts for water splitting and Zn—air battery. Chem. Eng. J. 2022, 437, 135281.

    Article  CAS  Google Scholar 

  223. Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

    Article  Google Scholar 

  224. Liu, W. X.; Zheng, D.; Zhang, L.; Yin, R. L.; Xu, X. L.; Shi, W. H.; Wu, F. F.; Cao, X. H.; Lu, X. H. Bioinspired interfacial engineering of a CoSe2 decorated carbon framework cathode towards temperature-tolerant and flexible Zn—air batteries. Nanoscale 2021, 13, 3019–3026.

    Article  CAS  Google Scholar 

  225. Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 2020, 32, 2002292.

    Article  CAS  Google Scholar 

  226. Yang, L. P.; Zhang, X.; Yu, L. X.; Hou, J. H.; Zhou, Z.; Lv, R. T. Atomic Fe-N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn-air batteries with stable cycling over 1000 h. Adv. Mater. 2020, 31, 2105410.

    Google Scholar 

  227. Yang, H. P.; Wu, Y.; Li, G. D.; Lin, Q.; Hu, Q.; Zhang, Q. L.; Liu, J. H.; He, C. X. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723.

    Article  CAS  Google Scholar 

  228. Chen, Y.; Mei, Y. X.; Li, M. L.; Dang, C. Y.; Huang, L.; Wu, W. G.; Wu, Y. Y.; Yu, X. H.; Wang, K.; Gu, L. et al. Highly selective CO2 conversion to methane or syngas tuned by CNTs@non-noble-metal cathodes in Zn-CO2 flow batteries. Green Chem. 2021, 23, 8138–8146.

    Article  CAS  Google Scholar 

  229. Li, W. Y.; Wu, T. X.; Zhang, S. B.; Liu, Y. Y.; Zhao, C. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem. Commun. 2018, 51, 11188–11191.

    Article  Google Scholar 

  230. Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for highperformance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

    Article  CAS  Google Scholar 

  231. Tang, K.; Hu, H.; Xiong, Y.; Chen, L.; Zhang, J.; Yuan, C.; Wu, M. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc—air batteries. Angew Chem., Int. Ed. 2022, 61, 202202671.

    Article  Google Scholar 

  232. Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

    Article  CAS  Google Scholar 

  233. Zhong, Y.; Xu, Y.; Ma, J.; Wang, C.; Sheng, S. Y.; Cheng, C. T.; Li, M. X.; Han, L.; Zhou, L. L.; Cai, Z. et al. An artificial electrode/electrolyte interface for CO2 electroreduction by cation surfactant self-assembly. Angew. Chem., Int. Ed. 2020, 59, 19095–19101.

    Article  CAS  Google Scholar 

  234. Du, C.; Qiu, C. L.; Fang, Z. Y.; Li, P.; Gao, Y. J.; Wang, J. G.; Chen, W. Interface hydrophobic tunnel engineering: A general strategy to boost electrochemical conversion of N2 to NH3. Nano Energy 2022, 92, 106784.

    Article  CAS  Google Scholar 

  235. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  236. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res, 2022, 15, 1730–1752.

    Article  CAS  Google Scholar 

  237. Zhang, F. Y.; Xie, K. Porous iron- and cobalt-based single crystals with enhanced electrocatalysis performance. Chin. J. Struct. Chem. 2021, 40, 61–69.

    Google Scholar 

  238. Liu, T. C.; Pan, F.; Amine, K. Prospect and reality of concentration gradient cathode of lithium-ion batteries. Chin. J. Struct. Chem. 2020, 39, 11–15.

    Article  CAS  Google Scholar 

  239. Guo, F. J.; Zhang, M. Y.; Yi, S. C.; Li, X. X.; Xin, R.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M.; Liu, Y. J. Metal-coordinated porous polydopamine nanospheres derived Fe3N-FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res. Energy 2022, in press, https://doi.org/10.26599/NRE.2022.9120027.

  240. Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys. Chim. Sin. 2021, 37, 2007054.

    Google Scholar 

  241. Wang, Y. H.; Jiang, W. J.; Yao, W.; Liu, Z. L.; Liu, Z.; Yang, Y.; Gao, L. Z. Advances in electrochemical reduction of carbon dioxide to formate over bismuth-based catalysts. Rare Metals 2021, 40, 2327–2353.

    Article  CAS  Google Scholar 

  242. Wei, Z. X.; Zhu, Y. T.; Liu, J. Y.; Zhang, Z. C.; Hu, W. P.; Xu, H.; Feng, Y. Z.; Ma, J. M. Recent advance in single-atom catalysis. Rare Metals 2021, 40, 767–789.

    Article  CAS  Google Scholar 

  243. Wang, J. J.; Li, X. P.; Cui, B. F.; Zhang, Z.; Hu, X. F.; Ding, J.; Deng, Y. D.; Han, X. P.; Hu, W. B. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals 2021, 40, 3019–3037.

    Article  CAS  Google Scholar 

  244. Gao, S.; Wei, T.; Sun, J.; Liu, Q.; Ma, D.; Liu, W.; Zhang, S.; Luo, J.; Liu, X. Atomically dispersed metal-based catalysts for Zn-CO2 batteries. Small Struct., in press, https://doi.org/10.1002/sstr.202200086.

  245. Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J. et al. Cu2O-Derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density. ACS Appl. Energy Mater. 2022, 5, 9487–9494.

    Article  CAS  Google Scholar 

  246. Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

    Article  Google Scholar 

  247. Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhao, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc—iodine batteries. Nano Res. Energy 2022, 1, e9120025.

    Article  Google Scholar 

  248. Chu, L.; Zhai, S. B.; Ahmad, W.; Zhang, J.; Zang, Y.; Yan, W. S.; Li, Y. F. High-performance large-area perovskite photovoltaic modules. Nano Res. Energy 2022, 1, e9120024.

    Article  Google Scholar 

  249. Hou, J. R.; Peng, X. Y.; Sun, J. Q.; Zhang, S. S.; Liu, Q.; Wang, X. Z.; Luo, J.; Li, X. J. Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS2 nanowire arrays. Inorg. Chem. Front. 2022, 9, 3047–3058.

    Article  CAS  Google Scholar 

  250. Yang, M. S.; Liu, Y. F.; Sun, J. Q.; Zhang, S. S.; Liu, X. J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186.

    Article  CAS  Google Scholar 

  251. Han, L. L.; Ren, Z. H.; Ou, P. F.; Cheng, H.; Rui, N.; Lin, L. L.; Liu, X. J.; Zhuo, L. C.; Song, J.; Sun, J. Q. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem., Int. Ed. 2021, 60, 345–350.

    Article  CAS  Google Scholar 

  252. Huang, W.; Zhou, D. J.; Lee, J.; Sun, J. Q.; Zhang, S. S.; Xu, H.; Luo, J.; Liu, X. J. Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light. Nanotechnology 2021, 32, 505722.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LZ21E020003), the National Natural Science Foundation of China (Nos. 21905246, 22075211, 21601136, 51971157, and 51621003), and Tianjin Science Fund for Distinguished Young Scholars (No. 19JCJQJC61800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Feng, J., Wei, T. et al. Active-site and interface engineering of cathode materials for aqueous Zn—gas batteries. Nano Res. 16, 2325–2346 (2023). https://doi.org/10.1007/s12274-022-4929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4929-7

Keywords

Navigation