Skip to main content
Log in

Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The interface between oxide/oxide layers shows an inhomogeneous charge transport behavior, which reveals a high conductivity owing to interface-doped. One typical example is the hetero-interface between ZnO film and other wide band gap oxides (e.g., Al2O3, TiO2, and HfO2). It is thus quite evident that the ZnO/other oxides hetero-interface contains high density electron carriers effectively screening the gate-induced electric field. Thus, an extremely weak gate modulation in ZnO film was showed, resulting in very low on/off ratio of 1.69 in top-gate field-effect-transistor (TG-FET) configuration. So, to extend the usage of ZnO TG-FET is not quite possible toward further practical application. Herein, we clarified the correlation of inhomogeneous region in oxide/oxide hetero-junction by systematically study. Our work suggests that a self-assembly of molecules (SAM) buffer layer is suitable for tuning the inhomogeneous charge transport in ZnO film, which not only reduces the interface trap density, but also effectively enhances the gate electric field modulation at the hetero-interface. We further report the robust fabrication of TG-FET arrays based on ZnO thin film, using an ultra-thin alkylphosphonic acid molecule monolayer as buffer layer. Our device demonstrates a pronounced ultrahigh on/off ratio of ≥ 108, which is 8-order of magnitude higher than that of a device without buffer layer. For the highly reliable arrays, our device exhibits a high yield of over 93% with an average on/off ratio of ~107 across the entire wafer scale, mobility (18.5 cm2/(V·s)), an extended bias-stressing (~ 2,000 s) and long-stability (~ 150 days) under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, D. H.; Freeman, D.; Nelson, S. F.; Cowdery-Corvan, P. J.; Irving, L. M. Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl. Phys. Lett. 2008, 92, 192101.

    Google Scholar 

  2. Park, J. W.; Kang, B. H.; Kim, H. J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 2019, 30, 1904632.

    Google Scholar 

  3. Rim, Y. S.; Chen, H. J.; Kou, X. L.; Duan, H. S.; Zhou, H. P.; Cai, M.; Kim, H. J.; Yang, Y. Boost up mobility of solution-processed metal oxide thin-film transistors via confining structure on electron pathways. Adv. Mater. 2014, 26, 4273–4278.

    CAS  Google Scholar 

  4. Lee, D. H.; Han, S. Y.; Herman, G. S.; Chang, C. H. Inkjet printed high-mobility indium zinc tin oxide thin film transistors. J. Mater. Chem. 2009, 19, 3135–3137.

    CAS  Google Scholar 

  5. Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388.

    CAS  Google Scholar 

  6. Banger, K. K.; Yamashita, Y.; Mori, K.; Peterson, R. L.; Leedham, T.; Rickard, J.; Sirringhaus, H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process. Nat. Mater. 2011, 10, 45–50.

    CAS  Google Scholar 

  7. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    CAS  Google Scholar 

  8. Tynell, T.; Karppinen, M. Atomic layer deposition of ZnO: A review. Semicond. Sci. Technol. 2014, 29, 043001.

    Google Scholar 

  9. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doǧan, S.; Avrutin, V.; Cho, S. J. Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Google Scholar 

  10. Hoye, R. L. Z.; Muñoz-Rojas, D.; Nelson, S. F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; MacManus-Driscoll, J. L. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices. APL Mater. 2015, 3, 040701.

    Google Scholar 

  11. Park, S.; H. K.; Hwang, C. S.; Jeong, H. Y.; Chu, H. Y.; Cho, K. I. Transparent ZnO-TFT arrays fabricated by atomic layer deposition. Electrochem. Solid State Lett. 2008, 11, H10.

    CAS  Google Scholar 

  12. Masuda, S.; Kitamura, K.; Okumura, Y.; Miyatake, S.; Tabata, H.; Kawai, T. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 2003, 93, 1624–1630.

    CAS  Google Scholar 

  13. Hirao, T.; Furuta, M.; Furuta, H.; Matsuda, T.; Hiramatsu, T.; Hokari, H.; Yoshida, M.; Ishii, H.; Kakegawa, M. Novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs. J. Soc. Inf. Disp. 2007, 15, 17–22.

    CAS  Google Scholar 

  14. Kwon, S.; Bang, S.; Lee, S.; Jeon, S.; Jeong, W.; Kim, H.; Gong, S. C.; Chang, H. J.; Park, H. H.; Jeon, H. Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures. Semicond. Sci. Technol. 2009, 24, 035015.

    Google Scholar 

  15. Carcia, P. F.; McLean, R. S.; Reilly, M. H. High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 2006, 88, 123509.

    Google Scholar 

  16. Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J., Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S. Atomic layer deposition of Nb-doped ZnO for thin film transistors. Appl. Physic Lett. 2016, 109, 222103.

    Google Scholar 

  17. Wrench, J. S.; Brunell, I. F.; Chalker, P. R.; Jin, J. D.; Shaw, A.; Mitrovic, I. Z.; Hall, S. Compositional tuning of atomic layer deposited MgZnO for thin film transistors. Appl. Phys. Lett. 2014, 105, 202109.

    Google Scholar 

  18. Kim, J. M.; Nam, T.; Lim, S. J.; Seol, Y. G.; Lee, N. E.; Kim, D.; Kim, H. Atomic layer deposition ZnO:N flexible thin film transistors and the effects of bending on device properties. Appl. Phys. Lett. 2011, 98, 142113.

    Google Scholar 

  19. Lim, S. J.; Kwon, S. J.; Kim, H.; Park, J. S. High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Appl. Phys. Lett. 2007, 91, 183517.

    Google Scholar 

  20. Chung, Y. J.; Choi, W. J.; Kang, S. G.; Lee, C. W.; Lee, J. O.; Kong, K. J.; Lee, Y. K. A study on the influence of local doping in atomic layer deposited Al:ZnO thin film transistors. J. Mater. Chem. C 2014, 2, 9274–9282.

    CAS  Google Scholar 

  21. Nelson, S. F.; Ellinger, C. R.; Levy, D. H. Improving yield and performance in ZnO thin-film transistors made using selective area deposition. ACS Appl. Mater. Interfaces 2015, 7, 2754–2759.

    CAS  Google Scholar 

  22. Noh, S. H.; Choi, W.; Oh, M. S.; Hwang, D. K.; Lee, K.; Im, S.; Jang, S.; Kim, E. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators. Appl. Phys. Lett. 2007, 90, 253504.

    Google Scholar 

  23. Jiang, X.; Wong, F. L.; Fung, M. K.; Lee, S. T. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 2003, 83, 1875–1877.

    CAS  Google Scholar 

  24. Stolt, L.; Hedström, J.; Kessler, J.; Ruckh, M.; Velthaus, K. O.; Schock, H. W. ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl. Phys. Lett. 1993, 62, 597–599.

    CAS  Google Scholar 

  25. Song, K.; Noh, J.; Jun, T.; Jung, Y.; Kang, H. Y.; Moon, J. Fully flexible solution-deposited ZnO thin-film transistors. Adv. Mater. 2010, 22, 4308–4312.

    CAS  Google Scholar 

  26. Lee, L.; Hwang, J.; Jung, J. W.; Kim, J.; Lee, H. I.; Heo, S.; Yoon, M.; Choi, S.; N. Van Long, Park, J.; Jeong, J. W. et al. ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors. Nat. Commun. 2019, 10, 1998.

    Google Scholar 

  27. Miao, Y. F.; Ke, Y.; Wang, N. N.; Zou, W.; Xu, M. M.; Cao, Y.; Sun, Y.; Yang, R.; Wang, Y.; Tong, Y. F. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 2019, 10, 3624.

    Google Scholar 

  28. Lin, Y. Y.; Hsu, C. C.; Tseng, M. H.; Shyue, J. J.; Tsai, F. Y. Stable and high-performance flexible ZnO thin-film transistors by atomic layer deposition. ACS Appl. Mater. Interfaces 2015, 7, 22610–22617.

    CAS  Google Scholar 

  29. Meyer, J.; Görrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H. H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater. 2009, 21, 1845–1849.

    CAS  Google Scholar 

  30. Görrn, P.; Riedl, T.; Kowalsky, W. Encapsulation of zinc tin oxide based thin film transistors. J. Phys. Chem. C 2009, 113, 11126–11130.

    Google Scholar 

  31. Fakhri, M.; Babin, N.; Behrendt, A.; Jakob, T.; Görrn, P.; Riedl, T. Facile encapsulation of oxide based thin film transistors by atomic layer deposition based on ozone. Adv. Mater. 2013, 25, 2821–2825.

    CAS  Google Scholar 

  32. Yun, W. M.; Jang, J.; Nam, S.; Kim, L. H.; Seo, S. J.; Park, C. E. Thermally evaporated SiO thin films as a versatile interlayer for plasma-based OLED passivation. ACS Appl. Mater. Interfaces 2012, 4, 3247–3253.

    CAS  Google Scholar 

  33. Luo, H.; Liang, L. Y.; Cao, H. T.; Dai, M. Z.; Lu, Y. C.; Wang, M. Control of Ambipolar transport in SnO thin-film transistors by backchannel surface passivation for high performance complementary-like inverters. ACS Appl. Mater. Interfaces 2015, 7, 17023–17031.

    CAS  Google Scholar 

  34. Park, J. C.; Ahn, S. E.; Lee, H. N. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel. ACS Appl. Mater. Interfaces 2013, 5, 12262–12267.

    CAS  Google Scholar 

  35. Geng, Y.; Guo, L.; Xu, S. S.; Sun, Q. Q.; Ding, S. J.; Lu, H. L.; Zhang, D. W. Influence of Al doping on the properties of ZnO thin films grown by atomic layer deposition. J. Phys. Chem. C 2011, 115, 12317–12321.

    CAS  Google Scholar 

  36. Lömker, P.; Müller, M. Redox-controlled epitaxy and magnetism of oxide heterointerfaces: EuO/SrTiO3. Phys. Rev. Mater. 2019, 3, 061401(R).

    Google Scholar 

  37. Rödel, T. C.; Dai, J.; Fortuna, F.; Frantzeskakis, E.; Le Fèvre, P.; Bertran, F.; Kobayashi, M.; Yukawa, R.; Mitsuhashi, T.; Kitamura, M.; Horiba, K. et al. High-density two-dimensional electron system induced by oxygen vacancies in ZnO. Phys. Rev. Mater. 2018, 2, 051601(R).

    Google Scholar 

  38. Choe, D.; Jin, M. J.; Kim, S. I.; Choi, H. J.; Jo, J.; Oh, I.; Park, J.; Jin, H.; Koo, H. C.; Min, B. C. et al. Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces. Nat. Commun. 2019, 10, 4510.

    Google Scholar 

  39. Losego, M. D.; Guske, J. T.; Efremenko, A.; Maria, J. P.; Franzen, S. Characterizing the molecular order of phosphonic acid self-assembled monolayers on indium tin oxide surfaces. Langmuir 2011, 27, 11883–11888.

    CAS  Google Scholar 

  40. Chin, H. S.; Chao, L. S. The effect of thermal annealing processes on structural and photoluminescence of zinc oxide thin film. J. Nanomater. 2013, 2013, 424953.

    Google Scholar 

  41. Nguyen, T. N.; Nguyen, V. D.; Jung, S.; Yi, J. The metal-induced crystallization of poly-Si and the mobility enhancement of thin film transistors fabricated on a glass substrate. Microelectron. Eng. 2010, 87, 2163–2167.

    CAS  Google Scholar 

  42. Phan, T. L.; Vu, Q. A.; Kim, Y. R.; Shin, Y. S.; Lee, I. M.; Tran, M. D.; Jiang, J. B.; Luong, D. H.; Liao, L.; Lee, Y. H. et al. Efficient gate modulation in a screening-engineered MoS2/single-walled carbon nanotube network heterojunction vertical field-effect transistor. ACS Appl. Mater. Interfaces 2019, 11, 25516–25523.

    CAS  Google Scholar 

  43. Wang, A. J.; Chen, T. F.; Lu, S. H.; Wu, Z.; Li, Y.; Chen, H.; Wang, Y. Effects of doping and annealing on properties of ZnO films grown by atomic layer deposition. Nanoscale Res. Lett. 2015, 10, 75.

    Google Scholar 

  44. Sheng, J. Z.; Hong, T. H.; Lee, H. M.; Kim, K. R.; Sasase, M.; Kim, J.; Hosono, H.; Park, J. S. Amorphous IGZO TFT with high mobility of 70 cm2/(V-s) via vertical dimension control using PEALD. ACS Appl. Mater. Interfaces 2019, 77, 40300–40309.

    Google Scholar 

  45. Phan, T. L.; Kang, M.; Choi, S. H.; Kim, Y. J.; Jung, H.; Yoon, I. T.; Yang, W. Charge transferred doping of single layer graphene by mono-dispersed manganese-oxide nanoparticles adsorption. Appl. Phys. Lett. 2017, 111, 153103.

    Google Scholar 

  46. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    CAS  Google Scholar 

  47. Kim, Y. R.; Phan, T. L.; Shin, Y. S.; Kang, W. T.; Won, U. Y.; Lee, I.; Kim, J. E.; Kim, K.; Lee, Y. H.; Yu, W. J. Unveiling the hot carrier distribution in vertical Graphene/h-BN/Au van der Waals heterostructures for high-performance photodetector. ACS Appl. Mater. Interfaces 2020, 12, 10772–10780.

    Google Scholar 

  48. Vu, Q. A.; Fan, S. D.; Lee, S. H.; Joo, M. K.; Yu, W. J.; Lee, Y. H. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 031001.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2018R1A2B2008069), Multi-Ministry Collaborative R&D Program through the National Research Foundation of Korea, funded by KNPA, MSIT, MOTIE, ME, and NFA (No. 2017M3D9A1073539). This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (No. NRF-2020M3A9E4039241). Y. H. L. and D. L. D. acknowledge the support from the Institute for Basic Science (No. IBS-R011-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Jong Yu.

Electronic Supplementary Material

12274_2020_2968_MOESM1_ESM.pdf

Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, T.L., Duong, D.L., Chau, T.K. et al. Tuning the inhomogeneous charge transport in ZnO interfaces for ultrahigh on/off ratio top-gated field-effect-transistor arrays. Nano Res. 13, 3033–3040 (2020). https://doi.org/10.1007/s12274-020-2968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2968-5

Keywords

Navigation