Skip to main content
Log in

Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To develop highly efficient electrochemical catalysts for N2 fixation is important to sustainable ambient NH3 production through the N2 reduction reaction (NRR). Herein, we demonstrate the development of vanadium phosphide nanoparticle on V foil as a high-efficiency and stable catalyst for ambient NH3 production with excellent selectivity. The high Faradaic efficiency of 22% with a large NH3 yield of 8.35 × 10−11 mol·s−1·cm−2 was obtained at 0 V vs. the reversible hydrogen electrode in acid solution, superior to all previously studied V-based NRR catalysts. Density functional theory calculations are also utilized to have an insight into the catalytic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”. Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Google Scholar 

  2. Rosca, V.; Duca, M.; De Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    CAS  Google Scholar 

  3. Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304–2310.

    CAS  Google Scholar 

  4. Nielsen, A. Ammonia: Catalysis and Manufacture; Springer-Verlag: Berlin, 1995; pp 199–308.

    Google Scholar 

  5. Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17–24.

    CAS  Google Scholar 

  6. Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

    CAS  Google Scholar 

  7. Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.

    CAS  Google Scholar 

  8. Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G; Gao, S. Y.; Sun, X. P. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556.

    CAS  Google Scholar 

  9. Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

    Google Scholar 

  10. Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2018, 2, 1800202.

    Google Scholar 

  11. Huang, H. H.; Xia, L.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2018, 54, 11427–11430.

    CAS  Google Scholar 

  12. Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.

    Google Scholar 

  13. Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 1673–1674.

  14. Zhao, R. B.; Liu, C. W.; Zhang, X. X.; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo, Y. B.; Gao, S. Y.; Luo, Y. L.; Wang, Z. M. et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 77–81.

    CAS  Google Scholar 

  15. Cao, N.; Chen, Z.; Zang, K. T.; Xu, J.; Zhong, J.; Luo, J.; Xu, X.; Zheng, G. F. Doping strain induced Bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nat. Commun. 2019, 10, 2877.

    Google Scholar 

  16. Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem. Commun. 2019, 55, 3371–3374.

    CAS  Google Scholar 

  17. Lv, C.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.

    CAS  Google Scholar 

  18. Wang, F. Y.; Lv, X.; Zhu, X. J.; Du, J.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Zheng, B. Z.; Sun, X. P. Bi nanodendrites for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chem. Commun. 2020, 56, 2107–2110.

    CAS  Google Scholar 

  19. Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

    CAS  Google Scholar 

  20. Li, Y. F.; Li, T. S.; Zhu, X. J.; Alshehri, A. A.; Alzahrani, K. A.; Lu, S. Y.; Sun, X. P. DyF3: An efficient electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem.—Asian J. 2020, 15, 487–489.

    CAS  Google Scholar 

  21. Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W. et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464–9469.

    CAS  Google Scholar 

  22. Li, C. B.; Ma, D. W.; Mou, S. Y.; Luo, Y. S.; Ma, B. Y.; Lu, S. Y.; Cui, G. W.; Li, Q.; Liu, Q.; Sun, X. P. Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J. Energy Chem. 2020, 50, 402–408.

    Google Scholar 

  23. Fang, Y. F.; Liu, Z. C.; Han, J. R.; Jin, Z. Y.; Han, Y. Q.; Wang, F. X.; Niu, Y. S.; Wu, Y. P.; Xu, Y. H. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx Mxene. Adv. Energy Mater. 2019, 9, 1803406.

    Google Scholar 

  24. Xu, T.; Ma, D. W.; Li, C. B.; Liu, Q.; Lu, S. Y.; Asiri, A. M.; Yang, C.; Sun, X. P. Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticle. Chem. Commun. 2020, 56, 3673–3676.

    CAS  Google Scholar 

  25. Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.

    CAS  Google Scholar 

  26. Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y. et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257–2260.

    CAS  Google Scholar 

  27. Qin, Q.; Zhao, Y.; Schmallegger, M.; Heil, T.; Schmidt, J.; Walczak, R.; Gescheidt-Demner, G.; Jiao, H. J.; Oschatz, M. Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew. Chem., Int. Ed. 2019, 58, 13101–13106.

    CAS  Google Scholar 

  28. Li, C. B.; Yu, J. L.; Yang, L.; Zhao, J. X.; Kong, W. H.; Wang, T.; Asiri, A. M.; Li, Q.; Sun, X. P. Spinel LiMn2O4 nanofiber: An efficient electrocatalyst for N2 reduction to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 9597–9601.

    CAS  Google Scholar 

  29. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater. 2019, 31, 1902709.

    Google Scholar 

  30. Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612–2616.

    CAS  Google Scholar 

  31. Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y.; Zhang, H. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. Environ 2020, 264, 118525.

    CAS  Google Scholar 

  32. Cheng, H.; Cui, P. X.; Wang, F. R.; Ding, L. X.; Wang, H. H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem., Int. Ed. 2019, 58, 15541–15547.

    CAS  Google Scholar 

  33. Zhao, C. J.; Zhang, S. B.; Han, M. M.; Zhang, X.; Liu, Y. Y.; Li, W. Y.; Chen, C.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Ambient electrosynthesis of ammonia on a biomass-derived nitrogen-doped porous carbon electrocatalyst: Contribution of pyridinic nitrogen. ACS Energy Lett. 2019, 4, 377–383.

    CAS  Google Scholar 

  34. Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008–1012.

    CAS  Google Scholar 

  35. Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090.

    CAS  Google Scholar 

  36. Eady, R. R. Structure-function relationships of alternative nitrogenases. Chem. Rev. 1996, 96, 3013–3030.

    CAS  Google Scholar 

  37. Bhattacharya, P.; Prokopchuk, D. E.; Mock, M. T. Exploring the role of pendant amines in transition metal complexes for the reduction of N2 to hydrazine and ammonia. Coord. Chem. Rev. 2017, 334, 67–83.

    CAS  Google Scholar 

  38. Zhang, R.; Han, J. R.; Zheng, B. Z.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Metal-organic framework-derived shuttle-like V2O3/C for electrocatalytic N2 reduction under ambient conditions. Inorg. Chem. Front. 2019, 6, 391–395.

    CAS  Google Scholar 

  39. Zhang, R.; Guo, H. R.; Yang, L.; Wang, Y.; Niu, Z. G; Huang, H.; Chen, H. Y.; Xia, L.; Li, T. S.; Shi, X. F. et al. Electrocatalytic N2 fixation over hollow VO2 microspheres at ambient conditions. ChemElectroChem 2019, 6, 1014–1018.

    CAS  Google Scholar 

  40. Feng, J.; Zhu, X. J.; Chen, Q. Y.; Xiong, W.; Cheng, X.; Luo, Y. L.; Alshehri, A. A.; Alzahrani, K. A.; Jiang, Z. J.; Li, W. Ultrasmall V8C7 nanoparticles embedded in conductive carbon for efficient electrocatalytic N2 reduction toward ambient NH3 production. J. Mater. Chem. A 2019, 7, 26227–26230.

    CAS  Google Scholar 

  41. Yang, X.; Kattel, S.; Nash, J.; Chang, X. X.; Lee, J. H.; Yan, Y. S.; Chen, J. G.; Xu, B. J. Quantification of active sites and elucidation of the reaction mechanism of the electrochemical nitrogen reduction reaction on vanadium nitride. Angew. Chem., Int. Ed. 2019, 131, 13906–13910.

    Google Scholar 

  42. Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

    CAS  Google Scholar 

  43. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    CAS  Google Scholar 

  44. Carenco, S.; Portehault, D.; Boissière, C.; Mèzailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

    CAS  Google Scholar 

  45. Woo, K.; Lee, K.; Kovnir, K. BP: Synthesis and properties of boron phosphide. Mater. Res. Express 2016, 3, 074003.

    Google Scholar 

  46. Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

    CAS  Google Scholar 

  47. Watt, G. W.; Chrisp, J. D. Spectrophotometric method for determination of hydrazine. Anal. Chem. 1952, 24, 2006–2008.

    CAS  Google Scholar 

  48. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

    CAS  Google Scholar 

  49. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758.

    CAS  Google Scholar 

  50. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

    Google Scholar 

  51. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671.

    CAS  Google Scholar 

  52. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244.

    CAS  Google Scholar 

  53. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    CAS  Google Scholar 

  54. Werfel, F.; Dräger, G; Brümmer, O. Electronic structure investigation of metallic vanadium by XS and XPS. Phys. Status Solidi (B) 1977, 83, 257–262.

    CAS  Google Scholar 

  55. Yang, G. X.; Chen, Y.; Zhou, Y. M.; Tang, Y. W.; Lu, T. H. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation. Electrochem. Commun. 2010, 12, 492–495.

    CAS  Google Scholar 

  56. Demeter, M.; Neumann, M.; Reichelt, W. Mixed-valence vanadium oxides studied by XPS. Surf. Sci. 2000, 454–456, 41–44.

    Google Scholar 

  57. Hu, P.; Zhu, T.; Ma, J. X.; Cai, C. C.; Hu, G. W.; Wang, X. P.; Liu, Z.; Zhou, L.; Mai, L. Q. Porous V2O5 microspheres: A high-capacity cathode material for aqueous zinc-ion batteries. Chem. Commun. 2019, 55, 8486–8489.

    CAS  Google Scholar 

  58. Goncalves, A. M.; Seitz, O.; Eb, A.; Mathieu, C.; Herlem, M.; Etcheberry, A. A significant anodic passivation of n and p-InP surfaces in liquid ammonia: First evidence of stable phosphorus-nitrogen bonds. ECS Trans. 2007, 6, 461–468.

    CAS  Google Scholar 

  59. Franke, R.; Chassé, T.; Streubel, P.; Meisel, A. Auger parameters and relaxation energies of phosphorus in solid compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 56, 381–388.

    CAS  Google Scholar 

  60. Liu, T. T.; Xie, L. S.; Yang, J. H.; Kong, R. M.; Du, G.; Asiri, A. M.; Sun, X. P.; Chen, L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 2017, 4, 1840–1845.

    CAS  Google Scholar 

  61. Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

    Google Scholar 

  62. Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21575137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Wang or Xuping Sun.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Geng, Q., Channa, A.I. et al. Electrocatalytic N2 reduction to NH3 with high Faradaic efficiency enabled by vanadium phosphide nanoparticle on V foil. Nano Res. 13, 2967–2972 (2020). https://doi.org/10.1007/s12274-020-2956-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2956-9

Keywords

Navigation