Skip to main content
Log in

Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

All-inorganic halide perovskites (IHP), CsPbX3 (X = Cl, Br, I) exhibiting efficient optical emissions within the spectral range of 410 to 730 nm are potential candidates for many optoelectronic devices. Anion alloying of these IHPs is expected to achieve tunable emission wavelength covering the entire visible spectrum. Here, we developed a two-step chemical vapor deposition (CVD) process for growing quaternary IHP CsPbX3 (X = Cl/Br and Br/I) alloys. By exploiting the fast diffusion of halide anions in IHPs, the alloy composition can be precisely controlled by the growth time of the respective layers once the growth of the individual ternary IHP is optimized. Hence complexities in the multi-parameter optimization in the conventional CVD growth of quaternary alloys can be mitigated. Using this process, we synthesized single crystalline, homogeneous and thermally stable CsPbCl3(1−X)Br3x and CsPbBr3(1−X)I3x perovskites alloy microplates and demonstrated continuously tunable emission covering the spectrum from 428 to 715 nm by varying the halide compositions in the alloys. These alloy microplates also exhibit room temperature amplified spontaneous emissions (ASE) along with strong photonic discharges from the microplate’s edges and hence are potentially useful as a gain medium as well as optical cavities for emissions with wavelengths covering the visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data are available from the corresponding author only upon request.

References

  1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    CAS  Google Scholar 

  2. NREL Best Research-Cell Efficiencies [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed April 16, 2020).

  3. Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal lead halide perovskite nanocrystals: Synthesis, optical properties and applications. NPG Asia Mater. 2016, 8, e328.

    CAS  Google Scholar 

  4. Yin, W. J.; Yan, Y. F.; Wei, S. H. Anomalous alloy properties in mixed halide perovskites. J. Phys. Chem. Lett. 2014, 5, 3625–3631.

    CAS  Google Scholar 

  5. Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 2014, 5, 5757.

    CAS  Google Scholar 

  6. Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

    Google Scholar 

  7. Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.

    CAS  Google Scholar 

  8. Kim, A.; Son, B. H.; Kim, H. S.; Ahn, Y. H. Direct measurement of diffusion length in mixed lead-halide perovskite films using scanning photocurrent microscopy. Curr. Opt. Photonics 2018, 2, 514–518.

    CAS  Google Scholar 

  9. Eaton, S. W.; Lai, M. L.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

    CAS  Google Scholar 

  10. Ahmadi, M.; Wu, T.; Hu, B. A review on organic-inorganic halide perovskite photodetectors: Device engineering and fundamental physics. Adv. Mater. 2017, 29, 1605242.

    Google Scholar 

  11. Fu, Y. P.; Zhu, H. M.; Schrader, A. W.; Liang, D.; Ding, Q.; Joshi, P.; Hwang, L.; Zhu, X. Y.; Jin, S. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett. 2016, 16, 1000–1008.

    CAS  Google Scholar 

  12. Edri, E.; Kirmayer, S.; Cahen, D.; Hodes, G. High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite. J. Phys. Chem. Lett. 2013, 4, 897–902.

    CAS  Google Scholar 

  13. Eperon, G E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

    CAS  Google Scholar 

  14. Jiang, Y.; Leyden, M. R.; Qiu, L. B.; Wang, S. H.; Ono, L. K.; Wu, Z. F.; Juarez-Perez, E. J.; Qi, Y. B. Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 2018, 28, 1703835.

    Google Scholar 

  15. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    CAS  Google Scholar 

  16. Yang, T.; Zheng, Y. P.; Du, Z. T.; Liu, W. N.; Yang, Z. B.; Gao, F. M.; Wang, L.; Chou, K. C.; Hou, X. M.; Yang, W. Y. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast response and high stability. ACS Nano 2018, 12, 1611–1617.

    CAS  Google Scholar 

  17. Zhang, Y. P.; Liu, J. Y.; Wang, Z. Y.; Xue, Y. Z.; Ou, Q. D.; Polavarapu, L.; Zheng, J L. Qi, X.; Bao, Q. L. Synthesis, properties, and optical applications of low-dimensional perovskites. Chem. Commun. 2016, 52, 13637–13655.

    CAS  Google Scholar 

  18. Dursun, I.; Shen, C.; Parida, M. R.; Pan, J.; Sarmah, S. P.; Priante, D.; Alyami, N.; Liu, J. K.; Saidaminov, M. I.; Alias, M. S. et al. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics 2016, 3, 1150–1156.

    CAS  Google Scholar 

  19. Wei, H. T.; Fang, Y. J.; Mulligan, P.; Chuirazzi, W.; Fang, H. H.; Wang, C. C.; Ecker, B. R.; Gao, Y. L.; Loi, M. A.; Cao, L. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 2016, 10, 333–339.

    CAS  Google Scholar 

  20. Aamir, M.; Adhikari, T.; Sher, M.; Khan, M. D.; Akhtar, J.; Nunzi, J. M. Cesium lead halide perovskite nanostructures: Tunable morphology and halide composition. Chem. Rec. 2018, 18, 230–238.

    CAS  Google Scholar 

  21. Beal, R. E.; Slotcavage, D. J.; Leijtens, T.; Bowring, A. R.; Belisle, R. A.; Nguyen, W. H.; Burkhard, G. F.; Hoke, E. T.; McGehee, M. D. Cesium lead halide perovskites with improved stability for tandem solar cells. J. Phys. Chem. Lett. 2016, 7, 746–751.

    CAS  Google Scholar 

  22. Park, K.; Lee, J. W.; Kim, J. D.; Han, N. S.; Jang, D. M.; Jeong, S.; Park, J.; Song, J. K. Light-matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 2016, 7, 3703–3710.

    Google Scholar 

  23. Nam, J. K.; Chai, S. U.; Cha, W.; Choi, Y. J.; Kim, W.; Jung, M. S.; Kwon, J.; Kim, D.; Park, J. H. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 2017, 17, 2028–2033.

    CAS  Google Scholar 

  24. Ju, M. G.; Dai, J.; Ma, L.; Zeng, X. C. Lead-free mixed tin and germanium perovskites for photovoltaic application. J. Am. Chem. Soc. 2017, 139, 8038–8043.

    CAS  Google Scholar 

  25. Tenuta, E.; Zheng, C.; Rubel, O. Thermodynamic origin of instability in hybrid halide perovskites. Sci. Rep. 2016, 6, 37654.

    CAS  Google Scholar 

  26. Seth, S.; Samanta, A. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Sci. Rep. 2016, 6, 37693.

    CAS  Google Scholar 

  27. Dastidar, S.; Egger, D. A.; Tan, L. Z.; Cromer, S. B.; Dillon, A. D.; Liu, S.; Kronik, L.; Rappe, A. M.; Fafarman, A. T. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Lett. 2016, 16, 3563–3570.

    CAS  Google Scholar 

  28. Xu, T. T.; Chen, L. X.; Guo, Z. H.; Ma, T. L. Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 2016, 18, 27026–27050.

    CAS  Google Scholar 

  29. Hoffman, J. B.; Schleper, A. L.; Kamat, P. V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3−x through halide exchange. J. Am. Chem. Soc. 2016, 138, 8603–8611.

    CAS  Google Scholar 

  30. Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

    Google Scholar 

  31. Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.

    CAS  Google Scholar 

  32. Ndione, P. F.; Li, Z.; Zhu, K. Effects of alloying on the optical properties of organic-inorganic lead halide perovskite thin films. J. Mater. Chem. C 2016, 4, 7775–7782.

    CAS  Google Scholar 

  33. Lei, T.; Lai, M. L.; Kong, Q.; Lu, D.; Lee, W.; Dou, L. T.; Wu, V.; Yu, Y.; Yang, P. D. Electrical and optical tunability in all-inorganic halide perovskite alloy nanowires. Nano Lett. 2018, 18, 3538–3542.

    CAS  Google Scholar 

  34. Zhou, H.; Yuan, S. P.; Wang, X. X.; Xu, T.; Wang, X.; Li, H. L.; Zheng, W. H.; Fan, P.; Li, Y. Y.; Sun, L. T. et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano 2017, 11, 1189–1195.

    CAS  Google Scholar 

  35. Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.

    CAS  Google Scholar 

  36. Zhou, Z. Q.; Cui, Y.; Deng, H. X.; Huang, L.; Wei, Z. M.; Li, J. B. Modulation of electronic and optical properties in mixed halide perovskites CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x). Appl. Phys. Lett. 2017, 110, 113901.

    Google Scholar 

  37. Gil-Escrig, L.; Momblona, C.; La-Placa, M. G.; Boix, P. P.; Sessolo, M.; Bolink, H. J. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater. 2018, 8, 1703506.

    Google Scholar 

  38. Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

    CAS  Google Scholar 

  39. Pan, G C.; Bai, X.; Yang, D. W.; Chen, X.; Jing, P. T.; Qu, S. N.; Zhang, L. J.; Zhou, D. L.; Zhu, J. Y.; Xu, W. et al. Doping lanthanide into perovskite nanocrystals: Highly improved and expanded optical properties. Nano Lett. 2017, 17, 8005–8011.

    CAS  Google Scholar 

  40. Zhang, J.; Shang, M. H.; Wang, P.; Huang, X. K.; Xu, J.; Hu, Z. Y.; Zhu, Y. J.; Han, L. Y. n-type doping and energy states tuning in CH3NH3Pb1−xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 2016, 1, 535–541.

    CAS  Google Scholar 

  41. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    CAS  Google Scholar 

  42. Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230–9233.

    CAS  Google Scholar 

  43. Zhang, A. D.; Dong, C. Q.; Ren, J. C. Tuning blinking behavior of highly luminescent cesium lead halide nanocrystals through varying halide composition. J. Phys. Chem. C 2017, 121, 13314–13323.

    CAS  Google Scholar 

  44. Huang, L.; Gao, Q. G.; Sun, L. D.; Dong, H.; Shi, S.; Cai, T.; Liao, Q.; Yan, C. H. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance. Adv. Mater. 2018, 30, 1800596.

    Google Scholar 

  45. Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

    CAS  Google Scholar 

  46. Pan, D. X.; Fu, Y. P.; Chen, J.; Czech, K. J.; Wright, J. C.; Jin, S. Visualization and studies of ion-diffusion kinetics in cesium lead bromide perovskite nanowires. Nano Lett. 2018, 18, 1807–1813.

    CAS  Google Scholar 

  47. Wang, Y. L.; Guan, X.; Li, D. H.; Cheng, H. C.; Duan, X. D.; Lin, Z. Y.; Duan, X. F. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 2017, 10, 1223–1233.

    CAS  Google Scholar 

  48. Cha, H.; Bae, S.; Jung, H.; Ko, M. J.; Jeon, H. Single-mode distributed feedback laser operation in solution-processed halide perovskite alloy system. Adv. Opt. Mater. 2017, 5, 1700545.

    Google Scholar 

  49. Guo, P. F.; Hossain, M. K.; Shen, X.; Sun, H. B.; Yang, W. C.; Liu, C. P.; Ho, C. Y.; Kwok, C. K.; Tsang, S. W.; Luo, Y. S. et al. Room-temperature red-green-blue whispering-gallery mode lasing and white-light emission from cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) Microstructures. Adv. Opt. Mater. 2018, 6, 1700993.

    Google Scholar 

  50. Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522–2536.

    CAS  Google Scholar 

  51. Tavakoli, M. M.; Gu, L. L.; Gao, Y.; Reckmeier, C.; He, J; Rogach, A. L; Yao, Y.; Fan, Z. Y. Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method. Sci. Rep. 2015, 5, 14083.

    Google Scholar 

  52. Kumar, S.; Sahare, P. D.; Kumar, S. Optimization of the CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Mater. Res. Bull. 2018, 105, 237–245.

    CAS  Google Scholar 

  53. Meyers, J. K.; Kim, S.; Hill, D. J.; Cating, E. E. M.; Williams, L. J.; Kumbhar, A. S.; McBride, J. R.; Papanikolas, J. M.; Cahoon, J. F. Self-catalyzed vapor-liquid-solid growth of lead halide nanowires and conversion to hybrid perovskites. Nano Lett. 2017, 17, 7561–7568.

    CAS  Google Scholar 

  54. Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic-inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838–844.

    CAS  Google Scholar 

  55. Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen, C.; Sum, T. C.; Xiong, Q. H. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett. 2015, 15, 4571–4577.

    CAS  Google Scholar 

  56. Møller, C. K. Crystal structure and photoconductivity of casium plumbohalides. Nature 1958, 182, 1436.

    Google Scholar 

  57. Zhou, Y. Y.; Zhou, Z. M.; Chen, M.; Zong, Y. X.; Huang, J. S.; Pang, S. P.; Padture, N. P. Doping and alloying for improved perovskite solar cells. J. Mater. Chem. A 2016, 4, 17623–17635.

    CAS  Google Scholar 

  58. Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

    CAS  Google Scholar 

  59. Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

    CAS  Google Scholar 

  60. Ono, L. K.; Wang, S. H.; Kato, Y.; Raga, S. R.; Qi, Y. B. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ. Sci. 2014, 7, 3989–3993.

    CAS  Google Scholar 

  61. Paul, T.; Chatterjee, B. K.; Maiti, S.; Sarkar, S.; Besra, N.; Das, B. K.; Panigrahi, K. J.; Thakur, S.; Ghorai, U. K.; Chattopadhyay, K. K. Tunable cathodoluminescence over the entire visible window from all-inorganic perovskite CsPbX3 1D architecture. J. Mater. Chem. C 2018, 6, 3322–3333.

    CAS  Google Scholar 

  62. Zhang, H. C.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C. F.; Yu, W. W.; Wang, X. Y.; Zhang, Y.; Xiao, M. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 2019, 10, 1088.

    CAS  Google Scholar 

  63. Sun, L. F.; Zhang, X. M.; Liu, F. C.; Shen, Y. D.; Fan, X. F.; Zheng, S. J.; Thong, J. T. L.; Liu, Z.; Yang, S. A., Yang, H. Y. Vacuum level dependent photoluminescence in chemical vapor deposition-grown monolayer MoS2. Sci. Rep. 2017, 7, 16714.

    Google Scholar 

  64. Wang, X. H.; Ning, J. Q.; Zheng, C. C.; Zhu, B. R.; Xie, L.; Wu, H. S.; Xu, S. J. Photoluminescence and Raman mapping characterization of WS2 monolayers prepared using top-down and bottom-up methods. J. Mater. Chem. C 2015, 3, 2589–2592.

    CAS  Google Scholar 

  65. Barker, A. J.; Sadhanala, A.; Deschler, F.; Gandini, M.; Senanayak, S. P.; Pearce, P. M.; Mosconi, E.; Pearson, A. J.; Wu, Y.; Srimath Kandada, A. R.; et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2017, 2, 1416–1424.

    CAS  Google Scholar 

  66. Brennan, M. C.; Draguta, S.; Kamat, P. V.; Kuno, M. Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 2018, 3, 204–213.

    CAS  Google Scholar 

  67. Bush, K. A.; Frohna, K.; Prasanna, R.; Beal, R. E.; Leijtens, T.; Swifter, S. A.; McGehee, M. D. Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. 2018, 3, 428–435.

    CAS  Google Scholar 

  68. Zhang, Q.; Su, R.; Liu, X. F.; Xing, J.; Sum, T. C.; Xiong, Q. H. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 2016, 26, 6238–6245.

    CAS  Google Scholar 

  69. Zhao, C. Y.; Tian, W. M.; Liu, J. X.; Sun, Q.; Luo, J. J.; Yuan, H.; Gai, B. D.; Tang, J.; Guo, J. W.; Jin, S. Y. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 2019, 10, 2357–2362.

    CAS  Google Scholar 

  70. Zhuang, X. J.; Ouyang, Y.; Wang, X. X.; Pan, A. L. Multicolor semiconductor lasers. Adv. Opt. Mater. 2019, 7, 1900071.

    Google Scholar 

  71. He, H. J.; Ma, E.; Chen, X. Y.; Yang, D. R.; Chen, B. L.; Qian, G. D. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods 2019, 3, 1900396.

    CAS  Google Scholar 

  72. Wang, X. X.; Zhou, H.; Yuan, S. P.; Zheng, W. H.; Jiang, Y.; Zhuang, X. J.; Liu, H. J.; Zhang, Q. L.; Zhu, X. L.; Wang, X. et al. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res. 2017, 10, 3385–3395.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by CityU SGP (No. 9380076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin M. Yu.

Electronic Supplementary Material

12274_2020_2951_MOESM1_ESM.pdf

Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.K., Guo, P., Qarony, W. et al. Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Res. 13, 2939–2949 (2020). https://doi.org/10.1007/s12274-020-2951-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2951-1

Keywords

Navigation