Skip to main content
Log in

Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The crystal structures would directly affect the physical and chemical properties of the surface of the material, and would thus influence the catalytic activity of the material. α-MnO2, β-MnO2 and γ-MnO2 nanorods with the same morphology yet different crystal structures were prepared and tested as oxidase mimics using 3,3’,5,5’-tetramethylbenzidine (TMB) as the substrate. β-MnO2 that exhibited the highest activity had a catalytic constant of 83.75 μmol·m−2·s−1, 2.7 and 19.0 times of those of α-MnO2 and γ-MnO2 (30.91 and 4.41 μmol·m−2·s−1), respectively. The characterization results showed that there were more surface hydroxyls as well as more Mn4+ on the surface of the β-MnO2 nanorods. The surface hydroxyls were conducive to the oxidation reaction, while Mn4+ was conducive to the regeneration of surface hydroxyls. The synergistic effect of the two factors significantly improved the activity of β-MnO2 oxidase mimic. Using β-MnO2, a β-MnO2-TMB-GSH system was established to detect the content of glutathione (GSH) rapidly and sensitively by colorimetry. This method had a wide detection range (0.11-45 μM) and a low detection limit (0.1 μM), and had been successfully applied to GSH quantification in human serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, X.; Liu X. D.; Zhang, X. D.; Cao, H. Y.; Huang, Y. M. MnO2 nanowires tuning of photoluminescence of alloy Cu/Ag NCs and thiamine enables a ratiometric fluorescent sensing of glutathione. Sens. Actuators B: Chem.2019, 286, 476–482.

    CAS  Google Scholar 

  2. Zhu, X. L.; Mao, X. X.; Wang, Z. H.; Feng, C.; Chen, G. F.; Li, G. X. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res.2017, 10, 959–970.

    CAS  Google Scholar 

  3. Shoja, Y.; Rafati, A. A.; Ghodsi, J. Polythiophene supported MnO2 nanoparticles as nano-stabilizer for simultaneously electrostatically immobilization of D-amino acid oxidase and hemoglobin as efficient bio-nanocomposite in fabrication of dopamine bi-enzyme biosensor. Mater. Sci. Eng.: C.2017, 76, 637–645.

    CAS  Google Scholar 

  4. Lai, W. Q.; Zeng, Q.; Tang, J.; Zhang, M. S.; Tang, D. P. A conventional chemical reaction for use in an unconventional assay: A colorimetric immunoassay for aflatoxin B1 by using enzyme-responsive justin-time generation of a MnO2 based nanocatalyst. Microchimica Acta2018, 185, 92.

    Google Scholar 

  5. Amjadi, M.; Hallaj, T.; Kouhi, Z. An enzyme-free fluorescent probe based on carbon dots-MnO2 nanosheets for determination of uric acid. J. Photochem. Photobiol. A: Chem.2018, 356, 603–609.

    CAS  Google Scholar 

  6. McVey, C.; Logan, N.; Thanh, N. T. K.; Elliott, C.; Cao, C. O. Unusual switchable peroxidase-mimicking nanozyme for the deter-mination of proteolytic biomarker. Nano Res.2019, 12, 509–516.

    CAS  Google Scholar 

  7. Lu, S. C. Regulation of glutathione synthesis. Mol. Aspects Med.2009, 30, 42–59.

    CAS  Google Scholar 

  8. Franco, R.; Cidlowski, J. A. Apoptosis and glutathione: Beyond an antioxidant. Cell Death Differ.2009, 16, 1303–1314.

    CAS  Google Scholar 

  9. Michelet, F.; Gueguen, R.; Leroy, P.; Wellman. M.; Nicolas, A.; Siest, G. Blood and plasma glutathione measured in healthy subjects by HPLC: Relation to sex, aging, biological variables, and life habits. Clin. Chem.1995, 41, 1509–1517.

    CAS  Google Scholar 

  10. Zhang, D.; Yang, Z. H.; Li, H. J.; Pei, Z. C.; Sun, S. G.; Xu, Y. Q. A simple excited-state intramolecular proton transfer probe based on a new strategy of thiol-azide reaction for the selective sensing of cysteine and glutathione. Chem. Commun.2016, 52, 749–752.

    CAS  Google Scholar 

  11. Townsend, D. W.; Tew, K. D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother.2003, 57, 145–155.

    CAS  Google Scholar 

  12. Estrela, J. M.; Ortega, A.; Obrador, E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci.2006, 43, 143–181.

    CAS  Google Scholar 

  13. Deng, R. R.; Xie, X. J.; Vendrell, M.; Chang, Y. T.; Liu, X. G. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc.2011, 133, 20168–20171.

    CAS  Google Scholar 

  14. Yang, Q. S.; Li, L.; Zhao, F.; Wang, Y. W.; Ye, Z. S.; Guo, X. H. Generation of MnO2 nanozyme in spherical polyelectrolyte brush for colorimetric detection of glutathione. Mater. Lett.2019, 248, 89–92.

    CAS  Google Scholar 

  15. Shamsipur, M.; Safavi, A.; Mohammadpour, Z. Indirect colorimetric detection of glutathione based on its radical restoration ability using carbon nanodots as nanozymes. Sens. Actuators B: Chem.2014, 199, 463–469.

    CAS  Google Scholar 

  16. Fu, Y.; Zhang H. X.; Dai, S. D.; Zhi, X.; Zhang, J. L.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst2015, 140, 6676–6683.

    CAS  Google Scholar 

  17. Han, K. N.; Choi, J. S.; Kwon, J. Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci. Rep..2017, 7, 2806.

    Google Scholar 

  18. Jiang, T.; Song, Y.; Du, D.; Liu, X. T.; Lin, Y. H. Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis. ACS Sens.2016, 1, 717–724.

    CAS  Google Scholar 

  19. Xie, J. X.; Zhang, X. D.; Wang, H.; Zheng, H. Z.; Huang, Y. M.; Xie, J. X. Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC, Trends Anal. Chem.2012, 39, 114–129.

    CAS  Google Scholar 

  20. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev.2013, 42, 6060–6093.

    CAS  Google Scholar 

  21. Liu, X.; Wang, Q.; Zhao, H. H.; Zhang, L. C.; Sun, Y. Y.; Lv, Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst2012, 137, 4552–4558.

    CAS  Google Scholar 

  22. Liu, J.; Meng, L. J.; Fei, Z. F.; Dyson, P. J.; Jing, X. N.; Liu, X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron.2017, 90, 69–74.

    CAS  Google Scholar 

  23. Zhang, X. D.; Mao, X. X.; Li, S. Q.; Dong, W. F.; Huang, Y. M. Tuning the oxidase mimics activity of manganese oxides via control of their growth conditions for highly sensitive detection of glutathione. Sens. Actuators B: Chem.2018, 258, 80–87.

    CAS  Google Scholar 

  24. Xie, J. X.; Zhang, X. D.; Jiang, H.; Wang, S.; Liu, H.; Huang, Y. M. V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media. RSC Adv.2014, 4, 26046–26049.

    CAS  Google Scholar 

  25. Liu, S. H.; Lu, F.; Xing, R. M.; Zhu, J. J. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem.-Eur. J.2011, 17, 620–625.

    CAS  Google Scholar 

  26. Wan, Y.; Qi, P.; Zhang, D.; Wu, J. J.; Wang, Y. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens. Bioelectron.2012, 33, 69–74.

    CAS  Google Scholar 

  27. Wang, R. H.; Li, J. H. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environ. Sci. Technol.2010, 44, 4282–4287.

    CAS  Google Scholar 

  28. Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C2008, 112, 5307–5315.

    CAS  Google Scholar 

  29. Schwegmann, H.; Feitz, A. J.; Frimmel, F, H. Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli.J. Colloid Interface Sci.2010, 347, 43–48.

    CAS  Google Scholar 

  30. Kätzel, U.; Vorbau, M.; Stintz, M.; Gottschalk-Gaudig, T.; Barthel, H. Dynamic light scattering for the characterization of polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact.2008, 25, 19–30.

    Google Scholar 

  31. Otsuka, K.; Wang, Y.; Sunada, E.; Yamanaka, I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal.1998, 175, 152–160.

    CAS  Google Scholar 

  32. Venkataswamy, P.; Jampaiah, D.; Mukherjee, D.; Aniz, C. U.; Reddy, B. M. Mn-doped ceria solid solutions for CO oxidation at lower temperatures. Catal. Lett.2016, 146, 2105–2118.

    CAS  Google Scholar 

  33. Yao, X. J.; Yu, Q.; Ji, Z. Y.; Lv, Y. Y.; Cao, Y.; Tang, C. J.; Gao, F.; Dong, L.; Chen, Y. A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M = Zr4+, Sn4+, Ti4+) catalysts for NO + CO reaction. Appl. Catal. B: Environ.2013, 130-131, 293–304.

    CAS  Google Scholar 

  34. Reddy, B. M.; Bharali, P.; Saikia, P.; Park, S. E.; Van Den Berg, M. W. E.; Muhler, M.; Grünert, W. Structural characterization and catalytic activity of nanosized CexM1-xO2 (M = Zr and Hf) mixed oxides. J. Phys. Chem. C2008, 112, 11729–11737.

    CAS  Google Scholar 

  35. Zhang, D. S.; Zhang, L.; Shi, L. Y.; Fang, C.; Li, H. R.; Gao, R. H.; Huang, L.; Zhang, J. P. In situ supported MnOx-CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale2013, 5, 1127–1136.

    CAS  Google Scholar 

  36. Jian, Y. F.; Ma, M. D.; Chen, C. W.; Liu, C.; Yu, Y. K.; Hao, Z. P.; He, C. Tuning the micromorphology and exposed facets of MnOx promotes methyl ethyl ketone low-temperature abatement: Boosting oxygen activation and electron transmission. Catal. Sci. Technol.2018, 8, 3863–3875.

    CAS  Google Scholar 

  37. Tang, W. X.; Wu, X. F.; Li, D. Y.; Wang, Z.; Liu, G.; Liu, H. D.; Chen, Y. F. Oxalate route for promoting activity of manganese oxide catalysts in total VOCs’ oxidation: Effect of calcination temperature and preparation method. J. Mater. Chem. A2014, 2, 2544–2554.

    CAS  Google Scholar 

  38. Bhide, V. G.; Dani, R. H. Electrical conductivity in oxides of manganese and related compounds. Physica1961, 27, 821–826.

    CAS  Google Scholar 

  39. Kahil, H. Introduction to the dynamic theory of the (H+, e-) couple insertion in γ-MnO2. J. Solid State Electrochem.2000, 4, 107–120.

    CAS  Google Scholar 

  40. Li, S. Q.; Wang, L. T.; Zhang, X. D.; Chai, H. X.; Huang, Y. M. A Co,N co-doped hierarchically porous carbon hybrid as a highly efficient oxidase mimetic for glutathione detection. Sens. Actuators B: Chem.2018, 264, 312–319.

    CAS  Google Scholar 

  41. Zhang, J.; Zhang, J. H.; Zhang, C. B.; He, H. Complete catalytic oxidation of ethanol over MnO2 with different crystal phase structures. Acta Phys. Chim. Sin.2015, 31, 353–359.

    Google Scholar 

  42. Zhang, X. L.; Ye, J. H.; Yuan, J.; Cai, T.; Xiao, B.; Liu, Z.; Zhao, K. F.; Yang, L.; He, D. N. Excellent low-temperature catalytic performance of nanosheet Co-Mn oxides for total benzene oxidation. Appl. Catal. A: Gen.2018, 566, 104–112.

    CAS  Google Scholar 

  43. Cai, S. X.; Zhang, D. S.; Zhang, L.; Li, H. R.; Gao, R. H.; Shi, L. Y.; Zhang, J. P. Comparative study of 3D ordered macroporous Ce0.75Zr0.2M0.05O2-δ (M = Fe, Cu, Mn, Co) for selective catalytic reduction of NO with NH3. Catal. Sci. Technol.2014, 4, 93–101.

    CAS  Google Scholar 

  44. Yang, J.; Liu, X. L.; Cao, H. B.; Shi, Y. C.; Xie, Y. B.; Xiao, J. D. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Front. Chem. Sci. Eng.2019, 13, 185–191.

    CAS  Google Scholar 

  45. Barber, J. Photosynthetic water splitting by the Mn4Ca2+Ox catalyst of photosystem II: Its structure, robustness and mechanism. Quart. Rev. Biophys.2017, 50, e13.

    Google Scholar 

  46. Siegbahn, P. E. M. Quantum chemical studies of manganese centers in biology. Curr. Opin. Chem. Biol.2002, 6, 227–235.

    CAS  Google Scholar 

  47. Liu, X.; Wang, Q.; Zhang, Y.; Zhang, L. C.; Su, Y. Y.; Lv, Y. Colorimetric detection of glutathione in human blood serum based on the reduction of oxidized TMB. New J. Chem.2013, 37, 2174–2178.

    CAS  Google Scholar 

  48. Ma, Y. H.; Zhang, Z. Y.; Ren, C. L.; Liu, G. Y.; Chen, X. G. A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst2012, 137, 485–489.

    CAS  Google Scholar 

  49. Feng, J. Y.; Huang, P. C.; Shi, S. Z.; Deng, K. Y.; Wu, F. Y. Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: A promising powerful tool for identifying cancer cells. Anal. Chim. Acta2017, 967, 64–69.

    CAS  Google Scholar 

  50. Ju, J.; Zhang, R. Z.; Chen, W. Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione. Sens. Actuators B: Chem.2016, 228, 66–73.

    CAS  Google Scholar 

  51. Liu, J.; Meng, L. J.; Fei, Z. F.; Dyson, P. J.; Zhang, L. On the origin of the synergy between the Pt nanoparticles and MnO2 nanosheets in Wonton-like 3D nanozyme oxidase mimics. Biosens. Bioelectron.2018, 121, 159–165.

    CAS  Google Scholar 

  52. Di, W. H; Zhang, X.; Qin, W. P. Single-layer MnO2 nanosheets for sensitive and selective detection of glutathione by a colorimetric method. Appl. Surf. Sci.2017, 400, 200–205.

    CAS  Google Scholar 

  53. Chen, X.; Wang, Y. R.; Chai, R.; Xu, Y.; Li, H. R.; Liu, B. Y. Luminescent lanthanide-based organic/inorganic hybrid materials for discrimination of glutathione in solution and within hydrogels. ACS Appl. Mater. Interfaces2017, 9, 13554–13563.

    CAS  Google Scholar 

  54. Zhai, Q. F.; Xing, H. H.; Fan, D. Q.; Zhang, X. W.; Li, J.; Wang, E. K. Gold-silver bimetallic nanoclusters with enhanced fluorescence for highly selective and sensitive detection of glutathione. Sens. Actuators B: Chem.2018, 273, 1827–1832.

    CAS  Google Scholar 

  55. Yan, X.; Song, Y.; Zhu, C. Z.; Song, J. H.; Du, D.; Su, X. G.; Lin, Y. H. Graphene quantum dot-MnO2 nanosheet based optical sensing platform: A sensitive fluorescence “turn off-on” nanosensor for glutathione detection and intracellular imaging. ACS Appl. Mater. Interfaces2016, 8, 21990–21996.

    CAS  Google Scholar 

  56. Gao, W. Y.; Liu, Z. Y.; Qi, L. M.; Lai, J. P.; Kitte, S. A.; Xu, G. B. Ultrasensitive glutathione detection based on lucigenin cathodic electrochemiluminescence in the presence of MnO2 nanosheets. Anal. Chem.2016, 88, 7654–7659.

    CAS  Google Scholar 

  57. Zhang, H. Z.; Zhang, L.; Ding, Y.; Zhang, W. Q.; Zhang, X.; Shen, Y. H.; Yang, F. C. Determination of glutathione based on NiPd nanoparticles mediated with acetaminophen. Anal. Methods2016, 8, 3000–3005.

    Google Scholar 

  58. Valero-Ruiz, E.; González-Sánchez, M. I.; Batchelor-McAuley, C.; Compton, R. G. Halogen mediated voltammetric oxidation of biological thiols and disulfides. Analyst2016, 141, 144–149.

    CAS  Google Scholar 

  59. Hassanvand, Z.; Jalali, F. Electrocatalytic determination of gluta-thione using transition metal hexacyanoferrates (MHCFs) of copper and cobalt electrode posited on graphene oxide nanosheets. Anal. Bioanal. Chem. Res.2018, 5, 115–129.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFA0202900), China Postdoctoral Science Foundation (No. 2018M642021), the National Natural Science Foundation of China (No. 21677095) and Minhang District Science and Technology Project of Shanghai (No. 2019MH-MS02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kunfeng Zhao, Peng Gao or Dannong He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Zhao, K., Zhang, Z. et al. Effects of crystal structure on the activity of MnO2 nanorods oxidase mimics. Nano Res. 13, 709–718 (2020). https://doi.org/10.1007/s12274-020-2680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2680-5

Keywords

Navigation