Skip to main content
Log in

Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Structural color materials with the property of angle-independence have attracted increasing interest in recent years because of their applications in various research fields. In this paper, inspired by the anisotropic lattice microstructure of the Parides sesostris butterfly, we present a novel angle-independent structural material by simply doping spinous pollen particles into the colloidal crystal arrays to interfere their self-assembling process. The resultant composited materials have anisotropic close-packed colloidal crystal domains around the spikes of the pollens. These differently oriented domains could reflect the light to a wide range of viewing angles, and thus imparted the composite materials with the same wide angle of structural colors. Attractively, the materials were endowed with light-controlled reversible structural color changing behavior by incorporating photothermal responsive graphene-tagged hydrogels. These features of the bioinspired angle-independent structural color materials showed their potential values in constructing intelligent sensors, anti-counterfeiting barcode labels, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vukusic, P.; Sambles, J. R. Photonic structures in biology. Nature 2003, 424, 852–855.

    Article  Google Scholar 

  2. Kuang, M. X.; Wang, J. X.; Jiang, L. Bio-inspired photonic crystals with superwettability. Chem. Soc. Rev. 2016, 45, 6833–6854.

    Article  Google Scholar 

  3. Teyssier, J.; Saenko, S. V.; van Der Marel, D.; Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368.

    Article  Google Scholar 

  4. Kolle, M.; Salgard-Cunha, P. M.; Scherer, M. R. J.; Huang, F. M.; Vukusic, P.; Mahajan, S.; Baumberg, J. J.; Steiner, U. Mimicking the colourful wing scale structure of the Papilio blumei butterfly. Nat. Nanotechnol. 2010, 5, 511–515.

    Article  Google Scholar 

  5. Zhao, Y. J.; Xie, Z. Y.; Gu, H. C.; Zhu, C.; Gu, Z. Z. Bio-inspired variable structural color materials. Chem. Soc. Rev. 2012, 41, 3297–3317.

    Article  Google Scholar 

  6. Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Structural color materials in evolution. Mater. Today 2016, 19, 420–421.

    Article  Google Scholar 

  7. Wang, M. S.; Yin, Y. D. Magnetically responsive nanostructures with tunable optical properties. J. Am. Chem. Soc. 2016, 138, 6315–6323.

    Article  Google Scholar 

  8. Kim, J.; Song, Y.; He, L.; Kim, H.; Lee, H.; Park, W.; Yin, Y. D.; Kwon, S. Real-time optofluidic synthesis of magnetochromatic microspheres for reversible structural color patterning. Small 2011, 7, 1163–1168.

    Article  Google Scholar 

  9. Hou, J.; Zhang, H. C.; Yang, Q.; Li, M. Z.; Song, Y. L.; Jiang, L. Bioinspired photonic-crystal microchip for fluorescent ultratrace detection. Angew. Chem., Int. Ed. 2014, 53, 5791–5795.

    Article  Google Scholar 

  10. Ai, B.; Möhwald, H.; Wang, D. Y.; Zhang, G. Advanced colloidal lithography beyond surface patterning. Adv. Mater. Interfaces 2017, 4, 1600271.

    Article  Google Scholar 

  11. Von Freymann, G.; Kitaev, V.; Lotsch, B. V.; Ozin, G. A. Bottom-up assembly of photonic crystals. Chem. Soc. Rev. 2013, 42, 2528–2554.

    Article  Google Scholar 

  12. Gallego-Gómez, F.; Blanco, A.; López, C. Exploration and exploitation of water in colloidal crystals. Adv. Mater. 2015, 27, 2686–2714.

    Article  Google Scholar 

  13. Wang, J. X.; Zhang, Y. Z.; Wang, S. T.; Song, Y. L.; Jiang, L. Bioinspired colloidal photonic crystals with controllable wettability. Acc. Chem. Res. 2011, 44, 405–415.

    Article  Google Scholar 

  14. Huang, Y. Zhou, J. M.; Su, B.; Shi, L.; Wang, J. X.; Chen, S. R.; Wang, L. B.; Zi, J.; Song, Y. L.; Jiang, L. Colloidal photonic crystals with narrow stopbands assembled from low-adhesive superhydrophobic substrates. J. Am. Chem. Soc. 2012, 134, 17053–17058.

    Article  Google Scholar 

  15. Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Rob. 2018, 3, eaar8580.

    Article  Google Scholar 

  16. Mao, Z. W.; Xu, H. L.; Wang, D. Y. Molecular mimetic self-assembly of colloidal particles. Adv. Funct. Mater. 2010, 20, 1053–1074.

    Article  Google Scholar 

  17. Chen, Z. Y.; Mo, M.; Fu, F. F.; Shang, L. R.; Wang, H.; Liu, C. H.; Zhao, Y. J. Antibacterial structural color hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 38901–38907.

    Article  Google Scholar 

  18. Kim, S. Y.; Park, H. S.; Choi, J. H.; Shim, J. W.; Yang, S. M. Integration of colloidal photonic crystals toward miniaturized spectrometers. Adv. Mater. 2010, 22, 946–950.

    Article  Google Scholar 

  19. Fu, F. F.; Chen, Z. Y.; Zhao, Z.; Wang, H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. USA 2017, 114, 5900–5905.

    Article  Google Scholar 

  20. Wang, H.; Zhao, Z.; Liu, Y. X.; Shao, C. M.; Bian, F. K.; Zhao, Y. J. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 2018, 4, eaat2816.

    Article  Google Scholar 

  21. Wang, Y. Q.; Low, Z, X.; Kim, S.; Zhang, H. C.; Chen, X. F.; Hou, J.; Seong, J. G.; Lee, Y. M.; Simon, G. P.; Davies, C. H. J. et al. Functionalized boron nitride nanosheets: A thermally rearranged polymer nanocomposite membrane for hydrogen separation. Angew. Chem., Int. Ed. 2018, 57, 16056–16061.

    Article  Google Scholar 

  22. Lee, H. S.; Kim, J. H.; Lee, J. S.; Sim, J. Y.; Seo, J. Y.; Oh, Y. K.; Yang, S. M.; Kim, S. H. Magnetoresponsive discoidal photonic crystals toward active color pigments. Adv. Mater. 2014, 26, 5801–5807.

    Article  Google Scholar 

  23. Kang, H.; Lee, J. S.; Chang, W. S.; Kim, S. H. Liquid-impermeable inverse opals with invariant photonic bandgap. Adv. Mater. 2015, 27, 1282–1287.

    Article  Google Scholar 

  24. Ge, J. P. Yin, Y. D. Responsive photonic crystals. Angew. Chem., Int. Ed. 2011, 50, 1492–1522.

    Article  Google Scholar 

  25. Smoukov, S. K.; Gangwal, S.; Marquez, M.; Velev, O. D. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Mater. 2009, 5, 1285–1292.

    Article  Google Scholar 

  26. Ohtsuka Y.; Seki T.; Takeoka Y. Thermally tunable hydrogels displaying angle-independent structural colors. Angew. Chem., Int. Ed. 2015, 54, 15368–15373.

    Google Scholar 

  27. Qin, D.; Xia, Y. N.; Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502.

    Article  Google Scholar 

  28. Reina, A.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

    Article  Google Scholar 

  29. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939–943.

    Article  Google Scholar 

  30. Kim, S.; Mitropoulos, A. N.; Spitzberg, J. D.; Hu, T.; Kaplan, D. L.; Omenetto, F. G. Silk inverse opals. Nat. Photonics 2012, 6, 818–823.

    Article  Google Scholar 

  31. Zhang, W. X.; Cui, J. C.; Tao, C. A.; Wu, Y. G.; Li, Z. P.; Ma, L.; Wen, Y. Q.; Li, G. T. A Strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem., Int. Ed. 2009, 121, 5978–5982.

    Article  Google Scholar 

  32. Hou, J.; Li, M. Z.; Song, Y. L. Recent advances in colloidal photonic crystal sensors: Materials, structures and analysis methods. Nano Today 2018, 22, 132–144.

    Article  Google Scholar 

  33. Wang, J.; Chen, G. P.; Zhao, Z.; Sun, L. Y.; Zou, M. H.; Ren, J, A.; Zhao, Y. J. Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci. China Mater. 2018, 61, 1314–1324.

    Article  Google Scholar 

  34. Lee, Y. J.; Braun, P. V. Tunable inverse opal hydrogel pH sensors. Adv. Mater. 2003, 15, 563–566.

    Article  Google Scholar 

  35. Wang, J.; Sun, L. Y.; Zou, M. H.; Gao, W.; Liu, C. H.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Bioinspired shape-memory graphene film with tunable wettability. Sci. Adv. 2017, 3, e1700004.

    Article  Google Scholar 

  36. Phillips, K. R.; England, G. T.; Sunny, S.; Shirman, E.; Shirman, T.; Vogel, N.; Aizenberg, J. A colloidoscope of colloid-based porous materials and their uses. Chem. Soc. Rev. 2016, 45, 281–322.

    Article  Google Scholar 

  37. Wang, J.; Gao, W.; Zhang, H.; Zou, M. H.; Chen, Y. P.; Zhao, Y. J. Programmable wettability on photocontrolled graphene film. Sci. Adv. 2018, 4, eaat7392.

    Article  Google Scholar 

  38. Liu, C. H.; Ding, H. B.; Wu, Z. Q.; Gao, B. B.; Fu, F. F.; Shang, L. R.; Gu, Z. Z.; Zhao, Y. J. Tunable structural color surfaces with visually self-reporting wettability. Adv. Funct. Mater. 2016, 26, 7937–7942.

    Article  Google Scholar 

  39. Ge, D. T.; Lee, E.; Yang, L. L.; Cho, Y.; Li, M.; Gianola, D. S.; Yang, S. A robust smart window: Reversibly switching from high transparency to angleindependent structural color display. Adv. Mater. 2015, 27, 2489–2495.

    Article  Google Scholar 

  40. Yue, Y. F.; Kurokawa, T.; Haque, M. A.; Nakajima, T.; Nonoyama, T.; Li, X. F.; Kajiwara, I.; Gong, J. P. Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat. Commun. 2014, 5, 4956.

    Article  Google Scholar 

  41. Gu, H. C.; Ye, B. F.; Ding, H. B.; Liu, C. H.; Zhao, Y. J.; Gu, Z. Z. Noniridescent structural color pigments from liquid marbles. J. Mater. Chem. C 2015, 3, 6607–6612.

    Article  Google Scholar 

  42. Ge, D. T; Yang, L. L.; Wu, G. X.; Yang, S. Spray coating of superhydrophobic and angle-independent coloured films. Chem. Commun. 2014, 50, 2469–2472.

    Article  Google Scholar 

  43. Ye, B. F.; Rong, F.; Gu, H. C.; Xie, Z. Y.; Cheng, Y.; Zhao, Y. J.; Gu, Z. Z. Bioinspired angle-independent photonic crystal colorimetric sensing. Chem. Commun. 2013, 49, 5331–5333.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 21105011 and 91227124), the Natural Science Foundation of Jiangsu (No. BK2012735), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1222). Y. J. Z. thanks the Program for New Century Excellent Talents in University and the Scientific Research Foundation of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjin Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Chen, Z., Sun, L. et al. Bio-inspired angle-independent structural color films with anisotropic colloidal crystal array domains. Nano Res. 12, 1579–1584 (2019). https://doi.org/10.1007/s12274-019-2395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2395-7

Keywords

Navigation