Skip to main content
Log in

Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Doping, which is the intentional introduction of impurities into a material, can improve the metal-semiconductor interface by reducing Schottky barrier width. Here, we present high-quality two-dimensional SnS2 nanosheets with well-controlled Sb doping concentration via direct vapor growth approach and following micromechanical cleavage process. X-ray photoelectron spectroscopy (XPS) measurement demonstrates that Sb contents of the doped samples are approximately 0.22%, 0.34% and 1.21%, respectively, and doping induces the upward shift of the Fermi level with respect to the pristine SnS2. Transmission electron microscopy (TEM) characterization exhibits that Sb-doped SnS2 nanosheets have a high-quality hexagonal symmetry structure and Sb element is uniformly distributed in the nanosheets. The phototransistors based on the Sb-doped SnS2 monolayers show n-type behavior with high mobility which is one order of magnitude higher than that of pristine SnS2 phototransistors. The photoresponsivity and external quantum efficiency (EQE) of Sb-SnS2 monolayers phototransistors are approximately three orders of magnitude higher than that of pristine SnS2 phototransistor. The results suggest that the method of reducing Shottky barrier width to achieve high mobility and photoresponsivity is effective, and Sb-doped SnS2 monolayer has significant potential in future nanoelectronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    Article  Google Scholar 

  2. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.

    Article  Google Scholar 

  3. Cui, Y.; Li, B.; Li, J. B.; Wei, Z. M. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci. China Phys. Mech. Astron. 2018, 61, 016801.

    Article  Google Scholar 

  4. Li, Q. Z.; Tang, L. P.; Zhang, C. X.; Wang, D.; Chen, Q. J.; Feng, Y. X.; Tang, L. M.; Chen, K. Q. Seeking the Dirac cones in the MoS2/WSe2 van der Waals heterostructure. Appl. Phys. Lett. 2017, 111, 171602.

    Article  Google Scholar 

  5. Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.

    Article  Google Scholar 

  6. Ning, F.; Wang, D.; Feng, Y. X.; Tang, L. M.; Zhang, Y.; Chen, K. Q. Strong interfacial interaction and enhanced optical absorption in graphene/InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 2017, 5, 9429–9438.

    Article  Google Scholar 

  7. Huo, N. J.; Yang, Y. J.; Li, J. B. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond. 2017, 38, 031002.

    Article  Google Scholar 

  8. Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci. Rep. 2017, 7, 41418.

    Article  Google Scholar 

  9. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of twodimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    Article  Google Scholar 

  10. Yang, H. H.; Gao, F.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Hu, P. A. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond. 2017, 38, 031004.

    Article  Google Scholar 

  11. Xue, X. X.; Feng, Y. X.; Liao, L.; Chen, Q. J.; Wang, D.; Tang, L. M.; Chen, K. Q. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys. Condens. Mat. 2018, 30, 125001.

    Article  Google Scholar 

  12. Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of supercooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.

    Article  Google Scholar 

  13. Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, 2, 1800094.

    Article  Google Scholar 

  14. Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

    Article  Google Scholar 

  15. Zou, J.; Tang, L. M.; Chen, K. Q; Feng, Y. X. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles. J. Phys. Condens. Mat. 2018, 30, 065001.

    Article  Google Scholar 

  16. Xie, G. F.; Ju, Z. F.; Zhou, K. K.; Wei, X. L.; Guo, Z. X.; Cai, Y. Q.; Zhang, G. Ultra-low thermal conductivity of two-dimensional phononic crystals in the incoherent regime. npj Comput. Mater. 2018, 4, 21.

    Google Scholar 

  17. Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.

    Article  Google Scholar 

  18. Xie, G. F.; Ding, D.; Zhang, G. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys. X 2018, 3, 1480417.

    Google Scholar 

  19. Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

    Article  Google Scholar 

  20. Xiang, D.; Liu, T.; Xu, J. L.; Tan, J. Y.; Hu, Z. H.; Lei, B.; Zheng, Y.; Wu, J.; Neto, A. H. C.; Liu, L. et al. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun. 2018, 9, 2966.

    Article  Google Scholar 

  21. Zhong, M. Z.; Wei, Z. M.; Meng, X. Q.; Wu, F. M.; Li, J. B. Highperformance single crystalline UV photodetectors of β-Ga2O3. J. Alloys Compd. 2015, 619, 572–575.

    Article  Google Scholar 

  22. Liu, F. J.; Wang, J. W.; Wang, L.; Cai, X. Y.; Jiang, C.; Wang, G. T. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond. 2017, 38, 034002.

    Article  Google Scholar 

  23. Liu, J. C.; Zhong, M. Z.; Liu, X.; Sun, G. Z.; Chen, P.; Zhang, Z. W.; Li, J.; Ma, H. F.; Zhao, B.; Wu, R. X. Two-dimensional plumbum-doped tin diselenide monolayer transistor with high on/off ratio. Nanotechnology 2018, 29, 474002.

    Article  Google Scholar 

  24. Tung, R. T. The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 2014, 1, 011304.

    Article  Google Scholar 

  25. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 2018, 557, 696–700.

    Article  Google Scholar 

  26. Yang, L. M.; Majumdar, K.; Liu, H.; Du, Y. C.; Wu, H.; Hatzistergos, M.; Hung, P. Y.; Tieckelmann, R.; Tsai, W.; Hobbs, C. et al. Chloride molecular doping technique on 2D Materials: WS2 and MoS2. Nano Lett. 2014, 14, 6275–6280.

    Article  Google Scholar 

  27. Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

    Article  Google Scholar 

  28. Kang, J. H.; Liu, W.; Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 2014, 104, 093106.

    Article  Google Scholar 

  29. Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

    Article  Google Scholar 

  30. Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.

    Article  Google Scholar 

  31. Liu, Y.; Zhou, H. L.; Weiss, N. O.; Huang, Y.; Duan, X. F. High-performance organic vertical thin film transistor using graphene as a tunable contact. ACS Nano 2015, 9, 11102–11108.

    Article  Google Scholar 

  32. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

    Article  Google Scholar 

  33. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

    Article  Google Scholar 

  34. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  35. Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

    Article  Google Scholar 

  36. Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

    Article  Google Scholar 

  37. Huang, Y.; Deng, H. X.; Xu, K.; Wang, Z. X.; Wang, Q. S.; Wang, F. M.; Wang, F.; Zhan, X. Y.; Li, S. S.; Luo, J. W. et al. Highly sensitive and fast phototransistor based on large size CVD-grown SnS2 nanosheets. Nanoscale 2015, 7, 14093–14099.

    Article  Google Scholar 

  38. Zhou, X.; Hu, X. Z.; Zhou, S. S.; Song, H. Y.; Zhang, Q.; Pi, L. J.; Li, L.; Li, H. Q.; Lü, J. T.; Zhai, T. Y. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.

    Article  Google Scholar 

  39. Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Zhai, T. Y. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv. Funct. Mater. 2016, 26, 4405–4413.

    Article  Google Scholar 

  40. Wang, Y.; Huang, L.; Li, B.; Shang, J. M.; Xia, C. X.; Fan, C.; Deng, H. X.; Wei, Z. M.; Li, J. B. Composition-tunable 2D SnSe2(1−x)S2x alloys towards efficient bandgap engineering and high performance (opto)electronics. J. Mater. Chem. C 2017, 5, 84–90.

    Article  Google Scholar 

  41. Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond. 2017, 38, 034001.

    Article  Google Scholar 

  42. Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.

    Article  Google Scholar 

  43. Chen, Y. F.; Dumcenco, D. O.; Zhu, Y. M.; Zhang, X.; Mao, N. N.; Feng, Q. L.; Zhang, M.; Zhang, J.; Tan, P. H.; Huang, Y. S. et al. Composition-dependent Raman modes of Mo1–xWxS2 monolayer alloys. Nanoscale 2014, 6, 2833–2839.

    Article  Google Scholar 

  44. Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1–x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

    Article  Google Scholar 

  45. Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.

    Article  Google Scholar 

  46. Huang, C.; Jin, Y. B.; Wang, W. Y.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.

    Article  Google Scholar 

  47. Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.

    Article  Google Scholar 

  48. Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.

    Article  Google Scholar 

  49. Han, Q. F.; Chen, L.; Zhu, W. C.; Wang, M. J.; Wang, X.; Yang, X. J.; Lu, L. D. Synthesis of Sb2S3 peanut-shaped superstructures. Mater. Lett. 2009, 63, 1030–1032.

    Article  Google Scholar 

  50. Zakaznova-Herzog, V. P.; Harmer, S. L.; Nesbitt, H. W.; Bancroft, G. M.; Flemming, R.; Pratt, A. R. High resolution XPS study of the large-bandgap semiconductor stibnite (Sb2S3): Structural contributions and surface reconstruction. Surf. Sci. 2006, 600, 348–356.

    Article  Google Scholar 

  51. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience: New York, 2006; p 137.

    Book  Google Scholar 

  52. Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.

    Article  Google Scholar 

  53. Kim, J. H.; Lee, J.; Kim, J. H.; Hwang, C. C.; Lee, C.; Park, J. Y. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules. Appl. Phys. Lett. 2015, 106, 251606.

    Article  Google Scholar 

  54. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    Article  Google Scholar 

  55. Cho, K.; Park, W.; Park, J.; Jeong, H.; Jang, J.; Kim, T. Y.; Hong, W. K.; Hong, S.; Lee, T. Electric stress-induced threshold voltage instability of multilayer MoS2 field effect transistors. ACS Nano 2013, 7, 7751–7758.

    Article  Google Scholar 

  56. Buscema, M.; Island, J. O.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 2015, 44, 3691–3718.

    Article  Google Scholar 

  57. Perumal, P.; Ulaganathan, R. K.; Sankar, R.; Liao, Y. M.; Sun, T. M.; Chu, M. W.; Chou, F. C.; Chen, Y. T.; Shih, M. H.; Chen, Y. F. Ultra-thin layered ternary single crystals [Sn(SxSe1–x)2] with bandgap engineering for high performance phototransistors on versatile substrates. Adv. Funct. Mater. 2016, 26, 3630–3638.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (Nos. 61804050, 51872086, 61622406, 11674310, and 61571415), the Double First-Class Initiative of Hunan University (No. 531109100004), and the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Li, Zhongming Wei or Xidong Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liu, X., Chen, Z. et al. Tunable Schottky barrier width and enormously enhanced photoresponsivity in Sb doped SnS2 monolayer. Nano Res. 12, 463–468 (2019). https://doi.org/10.1007/s12274-018-2243-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2243-1

Keywords

Navigation