Skip to main content
Log in

Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A co-precipitation method based on supersaturated recrystallization in a continuous stirred-tank reactor (CSTR) system was applied to uncover the growth mechanism of CsPbBr3 perovskite nanocrystals (NCs). The reaction rate can be controlled by changing the reaction conditions in this CSTR system, which helps us to observe important intermediate stages to gain insight into the growth mechanism of these NCs. The effects of the temperature, concentrations of the ligands (oleylamine and oleic acid), and precursor concentrations during the growth process of CsPbBr3 NCs were discussed in detail. Further, the growth mechanism of CsPbBr3 NCs was investigated in terms of the dynamics and thermodynamics on the basis of experimental results. The growth mechanism is a useful guide to large-scale synthesis. The synthesized CsPbBr3 NCs were employed for fabrication of both white light-emitting diodes and quantum-dot light-emitting diodes to test their photoelectric properties; the results show that CsPbBr3 NCs show great promise for optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, C.; Li, H.; Kolodziejski, K.; Dun, C.; Huang, W. X.; Carroll, D.; Geyer, S. M. Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Res. 2018, 11, 762–768.

    Article  Google Scholar 

  2. Tang, X. S.; Hu, Z. P.; Chen, W. W.; Xing, X.; Zang, Z. G.; Hu, W.; Qiu, J.; Du, J.; Leng, Y. X.; Jiang, X. F. et al. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy 2016, 28, 462–468.

    Article  Google Scholar 

  3. Swarnkar, A.; Ravi, V. K.; Nag, A. Beyond colloidal cesium lead halide perovskite nanocrystals: Analogous metal halides and doping. ACS Energy Lett. 2017, 2, 1089–1098.

    Article  Google Scholar 

  4. Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

    Article  Google Scholar 

  5. Gonzalez-Carrero, S.; Francés-Soriano, L.; González-Béjar, M.; Agouram, S.; Galian, R. E.; Pérez-Prieto, J. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced. Small 2016, 12, 5245–5250.

    Article  Google Scholar 

  6. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  Google Scholar 

  7. Shi, Z. F.; Li, Y.; Zhang, Y. T.; Chen, Y. S.; Li, X. J.; Wu, D.; Xu, T. T.; Shan, C. X.; Du, G. T. High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett. 2017, 17, 313–321.

    Article  Google Scholar 

  8. Cai, Z. X.; Li, F. M.; Xu, W.; Xia, S. J.; Zeng, J. B.; He, S. G.; Chen, X. Colloidal CsPbBr3 perovskite nanocrystal films as electrochemiluminescence emitters in aqueous solutions. Nano Res. 2018, 11, 1447–1455.

    Article  Google Scholar 

  9. Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

    Article  Google Scholar 

  10. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  11. Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

    Article  Google Scholar 

  12. Almeida, G.; Goldoni, L.; Akkerman, Q.; Dang, Z. Y.; Khan, A. H.; Marras, S.; Moreels, I.; Manna, L. Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals. ACS Nano 2018, 12, 1704–1711.

    Article  Google Scholar 

  13. Sun, S. B.; Yuan, D.; Xu, Y.; Wang, A. F.; Deng, Z. T. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 2016, 10, 3648–3657.

    Article  Google Scholar 

  14. Koolyk, M.; Amgar, D.; Aharon, S.; Etgar, L. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution. Nanoscale 2016, 8, 6403–6409.

    Article  Google Scholar 

  15. Cottingham, P.; Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246–5249.

    Article  Google Scholar 

  16. Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.

    Article  Google Scholar 

  17. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X. G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  Google Scholar 

  18. Wang, F. D.; Richards, V. N.; Shields, S. P.; Buhro, W. E. Kinetics and mechanisms of aggregative nanocrystal growth. Chem. Mater. 2014, 26, 5–21.

    Article  Google Scholar 

  19. Huang, H.; Raith, J.; Kershaw, S. V.; Kalytchuk, S.; Tomanec, O.; Jing, L. H.; Susha, A. S.; Zboril, R.; Rogach, A. L. Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nat. Commun. 2017, 8, 996.

    Article  Google Scholar 

  20. ten Brinck, S.; Infante, I. Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 2016, 1, 1266–1272.

    Article  Google Scholar 

  21. Li, J. L.; Yao, R. M.; Cao, C. B. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 5075–5082.

    Article  Google Scholar 

  22. Li, Y. X.; Huang, H.; Xiong, Y.; Kershaw, S. V.; Rogach, A. L. Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis. Angew. Chem., Int. Ed. 2018, 57, 5833–5837.

    Article  Google Scholar 

  23. Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988–4994.

    Article  Google Scholar 

  24. Zou, S. H.; Liu, Y. S.; Li, J. H.; Liu, C. P.; Feng, R.; Jiang, F. L.; Li, Y. X.; Song, J. Z.; Zeng, H. B.; Hong, M. C. et al. Stabilizing cesium lead halide perovskite lattice through Mn() substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 2017, 139, 11443–11450.

    Article  Google Scholar 

  25. Loiudice, A.; Saris, S.; Oveisi, E.; Alexander, D. T. L.; Buonsanti, R. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat. Angew. Chem., Int. Ed. 2017, 56, 10696–10701.

    Article  Google Scholar 

  26. Fan, L. W.; Ding, K.; Chen, H. T.; Xiang, S. P.; Zhang, R.; Guo, R. D.; Liu, Z. T.; Wang, L. Efficient pure green light-emitting diodes based on formamidinium lead bromide perovskite nanocrystals. Org. Electron. 2018, 60, 64–70.

    Article  Google Scholar 

  27. Zhang, X. Y.; Bai, X.; Wu, H.; Zhang, X. T.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Yu, W. W.; Rogach, A. L. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 130, 3395–3400.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 21574049 and 61564003). The authors also thank the Analytical and Testing Center of Huazhong University of Science and Technology (HUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoli Tu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Fan, L., Li, J. et al. Growth mechanism of CsPbBr3 perovskite nanocrystals by a co-precipitation method in a CSTR system. Nano Res. 12, 121–127 (2019). https://doi.org/10.1007/s12274-018-2190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2190-x

Keywords

Navigation