Skip to main content
Log in

Cell-based drug delivery systems for biomedical applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Spurred by numerous achievements in nanoscience and nanotechnology, the evolution of nanoparticulate drug delivery systems (nano-DDSs) is in its rapid growth period and attracting considerable attention due to their unique advantages in biomedical applications. Natural particulates ranging from mammalian cells to bacteria possess their own distinctive delivery processes and mechanisms, which inspires more design and development of cell-based DDSs by integrating the innate functions of cells with the nanoscale characteristics of nanoparticles. In this review article, we focus on the recent advances in cell-based DDSs for site-specific delivery of therapeutics and enhanced treatment of diseases. The promise and perils of cell-based DDSs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    Article  Google Scholar 

  2. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  Google Scholar 

  3. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  Google Scholar 

  4. Bobo, D.; Robinson, K. J.; Islam, J.; Thurecht, K. J.; Corrie, S. R. Nanoparticle–based medicines: A review of FDAapproved materials and clinical trials to date. Pharm. Res. 2016, 33, 2373–2387.

    Article  Google Scholar 

  5. Greish, K. Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: Are we there yet? Drug Discov. Today: Technol. 2012, 9, e161–e166.

    Article  Google Scholar 

  6. Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

    Article  Google Scholar 

  7. Huang, Y. Q.; Yao, X.; Zhang, R.; Ouyang, L.; Jiang, R. C.; Liu, X. F.; Song, C. X.; Zhang, G. W.; Fan, Q. L.; Wang, L. H. et al. Cationic conjugated polymer/fluoresceinaminehyaluronan complex for sensitive fluorescence detection of CD44 and tumor–targeted cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 19144–19153.

    Article  Google Scholar 

  8. Banerjee, R.; Tyagi, P.; Li, S.; Huang, L. Anisamidetargeted stealth liposomes: A potent carrier for targeting doxorubicin to human prostate cancer cells. Int. J. Cancer 2004, 112, 693–700.

    Article  Google Scholar 

  9. Lu, L.; Zou, Y.; Yang, W. J; Meng, F. H; Deng, C.; Cheng, R.; Zhong, Z. Y. Anisamide–decorated pH–sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells. Biomacromolecules 2015, 16, 1726–1735.

    Article  Google Scholar 

  10. Chen, F.; Zhao, Y. Y.; Pan, Y. M.; Xue, X. D.; Zhang, X.; Kumar, A.; Liang, X. J. Synergistically enhanced therapeutic effect of a carrier–free HCPT/Dox nanodrug on breast cancer cells through improved cellular drug accumulation. Mol. Pharm. 2015, 12, 2237–2244.

    Article  Google Scholar 

  11. Lwin, T. M.; Murakami, T.; Miyake, K.; Yazaki, P. J.; Shivley, J. E.; Hoffman, R. M.; Bouvet, M. Tumor–specific labeling of pancreatic cancer using a humanized anti–CEA antibody conjugated to a near–infrared fluorophore. Ann. Surg. Oncol. 2018, 25, 1079–1085.

    Article  Google Scholar 

  12. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

    Article  Google Scholar 

  13. Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal–activated nanomaterials for anticancer drug delivery. Mater. Today 2016, 19, 274–283.

    Article  Google Scholar 

  14. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli–responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  15. Yoo, J. W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bioinspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.

    Article  Google Scholar 

  16. Batrakova, E. V.; Gendelman, H. E.; Kabanov, A. V. Cellmediated drug delivery. Expert Opin. Drug Deliv. 2011, 8, 415–433.

    Article  Google Scholar 

  17. Zhai, Y. H.; Su, J. H.; Ran, W.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Preparation and application of cell membrane–camouflaged nanoparticles for cancer therapy. Theranostics 2017, 7, 2575–2592.

    Article  Google Scholar 

  18. Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane–based drug delivery systems. Theranostics 2015, 5, 863–881.

    Article  Google Scholar 

  19. Higgins, J. M. Red blood cell population dynamics. Clin. Lab. Med. 2015, 35, 43–57.

    Article  Google Scholar 

  20. Millán, C. G.; Marinero, M. L. S.; Castañeda, A. Z.; Lanao, J. M. Drug, enzyme and peptide delivery using erythrocytes as carriers. J. Controlled Release 2004, 95, 27–49.

    Article  Google Scholar 

  21. Ihler, G. M.; Glew, R. H.; Schnure, F. W. Enzyme loading of erythrocytes. Proc. Natl. Acad. Sci. USA 1973, 70, 2663–2666.

    Article  Google Scholar 

  22. Wibroe, P. P.; Anselmo, A. C.; Nilsson, P. H.; Sarode, A.; Gupta, V.; Urbanics, R.; Szebeni, J.; Hunter, A. C.; Mitragotri, S.; Mollnes, T. E. et al. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Nat. Nanotechnol. 2017, 12, 589–594.

    Article  Google Scholar 

  23. Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane–camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

    Article  Google Scholar 

  24. Hu, C. M. J.; Fang, R. H.; Copp, J.; Luk, B. T.; Zhang, L. F. A biomimetic nanosponge that absorbs pore–forming toxins. Nat. Nanotechnol. 2013, 8, 336–340.

    Article  Google Scholar 

  25. Hu, C. M. J.; Fang, R. H.; Luk, B. T.; Zhang, L. F. Nanoparticle–detained toxins for safe and effective vaccination. Nat. Nanotechnol. 2013, 8, 933–938.

    Article  Google Scholar 

  26. Wang, F.; Gao, W. W.; Thamphiwatana, S.; Luk, B. T.; Angsantikul, P.; Zhang, Q. Z.; Hu, C. M. J.; Fang, R. H.; Copp, J. A.; Pornpattananangkul, D. et al. Hydrogel retaining toxin–absorbing nanosponges for local treatment of methicillinresistant Staphylococcus aureus infection. Adv. Mater. 2015, 27, 3437–3443.

    Article  Google Scholar 

  27. Zhang, X. X.; Angsantikul, P.; Ying, M.; Zhuang, J.; Zhang, Q. Z.; Wei, X. L.; Jiang, Y.; Zhang, Y.; Dehaini, D.; Chen, M. C. et al. Remote loading of small–molecule therapeutics into cholesterol–enriched cell–membrane–derived vesicles. Angew. Chem. Int. Ed. 2017, 56, 14075–14079.

    Article  Google Scholar 

  28. Su, J. H.; Sun, H. P.; Meng, Q. S.; Zhang, P. C.; Yin, Q.; Li, Y. P. Enhanced blood suspensibility and laser–activated tumor–specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 2017, 7, 523–537.

    Article  Google Scholar 

  29. Gao, M.; Liang, C.; Song, X. J.; Chen, Q.; Jin, Q. T.; Wang, C.; Liu, Z. Erythrocyte–membrane–enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater. 2017, 29, 1701429.

    Article  Google Scholar 

  30. Guo, Y. Y.; Wang, D.; Song, Q. L.; Wu, T. T.; Zhuang, X. T.; Bao, Y. L.; Kong, M.; Qi, Y.; Tan, S. W.; Zhang, Z. P. Erythrocyte membrane–enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano 2015, 9, 6918–6933.

    Article  Google Scholar 

  31. Wang, C.; Ye, Y. Q.; Sun, W. J.; Yu, J. C.; Wang, J. Q.; Lawrence, D. S.; Buse, J. B.; Gu, Z. Red blood cells for glucose–responsive insulin delivery. Adv. Mater. 2017, 29, 1606617.

    Article  Google Scholar 

  32. Wang, C.; Sun, W. J.; Ye, Y. Q.; Hu, Q. Y.; Bomba, H. N.; Gu, Z. In situ activation of platelets with checkpoint inhibitors for post–surgical cancer immunotherapy. Nat. Biomed. Eng. 2017, 1, 0011.

    Article  Google Scholar 

  33. Hu, Q. Y.; Sun, W. J.; Qian, C. G.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet–mimicking nanovehicles. Adv. Mater. 2015, 27, 7043–7050.

    Article  Google Scholar 

  34. Hu, Q. Y.; Qian, C. G.; Sun, W. J.; Wang, J. Q.; Chen, Z. W.; Bomba, H. N.; Xin, H. L.; Shen, Q. D.; Gu, Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 2016, 28, 9573–9580.

    Article  Google Scholar 

  35. Tang, J. N.; Su, T.; Huang, K.; Dinh, P. U.; Wang, Z. G.; Vandergriff, A.; Hensley, M. T.; Cores, J.; Allen, T.; Li, T. S. et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat. Biomed. Eng. 2018, 2, 17–26.

    Article  Google Scholar 

  36. Hu, C. M. J.; Fang, R. H.; Wang, K. C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

    Article  Google Scholar 

  37. De Palma, M.; Mazzieri, R.; Politi, L. S.; Pucci, F.; Zonari, E.; Sitia, G.; Mazzoleni, S.; Moi, D.; Venneri, M. A.; Indraccolo, S. et al. Tumor–targeted interferon–α delivery by Tie2–expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 2008, 14, 299–311.

    Article  Google Scholar 

  38. Smith, B. R.; Ghosn, E. E. B.; Rallapalli, H.; Prescher, J. A.; Larson, T.; Herzenberg, L. A.; Gambhir, S. S. Selective uptake of single–walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9, 481–487.

    Article  Google Scholar 

  39. Lang, T. Q.; Dong, X. Y.; Huang, Y.; Ran, W.; Yin, Q.; Zhang, P. C.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Ly6Chi monocytes delivering pH–sensitive micelle loading paclitaxel improve targeting therapy of metastatic breast cancer. Adv. Funct. Mater. 2017, 27, 1701093.

    Article  Google Scholar 

  40. He, X. Y.; Cao, H. Q.; Wang, H.; Tan, T.; Yu, H. J.; Zhang, P. C.; Yin, Q.; Zhang, Z. W.; Li, Y. P. Inflammatory monocytes loading protease–sensitive nanoparticles enable lung metastasis targeting and intelligent drug release for anti–metastasis therapy. Nano Lett. 2017, 17, 5546–5554.

    Article  Google Scholar 

  41. Doshi, N.; Swiston, A. J.; Gilbert, J. B.; Alcaraz, M. L.; Cohen, R. E.; Rubner, M. F.; Mitragotri, S. Cell–based drug delivery devices using phagocytosis–resistant backpacks. Adv. Mater. 2011, 23, H105–H109.

    Article  Google Scholar 

  42. Cao, H. Q.; Dan, Z. L.; He, X. Y.; Zhang, Z. W.; Yu, H. J.; Yin, Q.; Li, Y. P. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano 2016, 10, 7738–7748.

    Article  Google Scholar 

  43. Zhang, Y.; Cai, K. M.; Li, C.; Guo, Q.; Chen, Q. J.; He, X.; Liu, L. S.; Zhang, Y. J.; Lu, Y. F.; Chen, X. L. et al. Macrophage–membrane–coated nanoparticles for tumortargeted chemotherapy. Nano Lett. 2018, 18, 1908–1915.

    Article  Google Scholar 

  44. Xue, J. W.; Zhao, Z. K.; Zhang, L.; Xue, L. J.; Shen, S. Y.; Wen, Y. J.; Wei, Z. Y.; Wang, L.; Kong, L. Y.; Sun, H. B. et al. Neutrophil–mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 2017, 12, 692–700.

    Article  Google Scholar 

  45. Villanueva, M. T. Chemotherapy: Neutrophils deliver the goods. Nat. Rev. Cancer 2017, 17, 454–455.

    Article  Google Scholar 

  46. Osuka, S.; Van Meir, E. G. Cancer therapy: Neutrophils traffic in cancer nanodrugs. Nat. Nanotechnol. 2017, 12, 616–618.

    Article  Google Scholar 

  47. Wang, Z. J; Li, J.; Cho, J.; Malik, A. B. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat. Nanotechnol. 2014, 9, 204–210.

    Google Scholar 

  48. Chu, D. F.; Gao, J.; Wang, Z. J. Neutrophil–mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 2015, 9, 11800–11811.

    Article  Google Scholar 

  49. Zhang, C.; Ling, C. L.; Pang, L.; Wang, Q.; Liu, J. X.; Wang B. S.; Liang, J. M.; Guo, Y. Z.; Qin, J.; Wang, J. X. Direct macromolecular drug delivery to cerebral ischemia area using neutrophil–mediated nanoparticles. Theranostics 2017, 7, 3260–3275.

    Article  Google Scholar 

  50. Kang, T.; Zhu, Q. Q.; Wei, D.; Feng, J. X.; Yao, J. H.; Jiang, T. Z.; Song, Q. X.; Wei, X. B.; Chen, H. Z.; Gao, X. L. et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 2017, 11, 1397–1411.

    Article  Google Scholar 

  51. Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surfaceconjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041.

    Article  Google Scholar 

  52. Huang, B.; Abraham, W. D.; Zheng, Y. R.; López, S. C. B.; Luo, S. S.; Irvine, D. J. Active targeting of chemotherapy to disseminated tumors using nanoparticle–carrying T cells. Sci. Transl. Med. 2015, 7, 291ra94.

    Google Scholar 

  53. Tang, L.; Zheng, Y. R.; Melo, M. B.; Mabardi, L.; Castaño, A. P.; Xie, Y. Q.; Li, N.; Kudchodkar, S. B.; Wong, H. C.; Jeng, E. K. et al. Enhancing T cell therapy through TCRsignaling–responsive nanoparticle drug delivery. Nat. Biotechnol. 2018, 36, 707–716.

    Google Scholar 

  54. Aboody, K. S.; Brown, A.; Rainov, N. G.; Bower, K. A.; Liu, S. X.; Yang, W.; Small, J. E.; Herrlinger, U.; Ourednik, V.; Black, P. M. et al. Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 2000, 97, 12846–12851.

    Article  Google Scholar 

  55. Kim, S. K.; Kim, S. U.; Park, I. H.; Bang, J. H.; Aboody, K. S.; Wang, K. C.; Cho, B. K.; Kim, M.; Menon, L. G.; Black, P. M. et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin. Cancer Res. 2006, 12, 5550–5556.

    Article  Google Scholar 

  56. Yuan, X. P.; Hu, J. W.; Belladonna, M. L.; Black, K. L.; Yu, J. S. Interleukin–23–expressing bone marrow–derived neural stem–like cells exhibit antitumor activity against intracranial glioma. Cancer Res. 2006, 66, 2630–2638.

    Article  Google Scholar 

  57. Bagó, J. R.; Okolie, O.; Dumitru, R.; Ewend, M. G.; Parker, J. S.; Werff, R. V.; Underhill, T. M.; Schmid, R. S.; Miller, C. R.; Hingtgen, S. D. Tumor–homing cytotoxic human induced neural stem cells for cancer therapy. Sci. Transl. Med. 2017, 9, eaah6510.

    Article  Google Scholar 

  58. Mooney, R.; Roma, L.; Zhao, D. H.; Van Haute D.; Garcia, E.; Kim, S. U.; Annala, A. J.; Aboody, K. S.; Berlin, J. M. Neural stem cell–mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano 2014, 8, 12450–12460.

    Article  Google Scholar 

  59. Reagan, M. R.; Kaplan, D. L. Concise review: Mesenchymal stem cell tumor–homing: Detection methods in disease model systems. Stem Cells 2011, 29, 920–927.

    Article  Google Scholar 

  60. Wang, H.; Cao, F.; De, A.; Cao, Y.; Contag, C.; Gambhir, S. S.; Wu, J. C.; Chen, X. Y. Trafficking mesenchymal stem cell engraftment and differentiation in tumor–bearing mice by bioluminescence imaging. Stem Cells 2009, 27, 1548–1558.

    Article  Google Scholar 

  61. Zlotnik, A.; Burkhardt, A. M.; Homey, B. Homeostatic chemokine receptors and organ–specific metastasis. Nat. Rev. Immunol. 2011, 11, 597–606.

    Article  Google Scholar 

  62. Liu, L. N.; Zhang, S. X.; Liao, W. B.; Farhoodi, H. P.; Wong, C. W.; Chen, C. C.; Ségaliny, A. I.; Chacko, J. V.; Nguyen, L. P.; Lu, M. R. et al. Mechanoresponsive stem cells to target cancer metastases through biophysical cues. Sci. Transl. Med. 2017, 9, eaan2966.

    Article  Google Scholar 

  63. Zhao, Y. K.; Tang, S. S.; Guo, J. M.; Alahdal, M.; Cao, S. X.; Yang, Z. C.; Zhang, F. F.; Shen, Y. M.; Sun, M. J.; Mo, R. et al. Targeted delivery of doxorubicin by nano–loaded mesenchymal stem cells for lung melanoma metastases therapy. Sci. Rep. 2017, 7, 44758.

    Article  Google Scholar 

  64. Li, L. L.; Guan, Y. Q.; Liu, H. Y.; Hao, N. J.; Liu, T. L.; Meng, X. W.; Fu, C. H.; Li, Y. Z.; Qu, Q. L.; Zhang, Y. G. et al. Silica nanorattle–doxorubicin–anchored mesenchymal stem cells for tumor–tropic therapy. ACS Nano 2011, 5, 7462–7470.

    Article  Google Scholar 

  65. Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Bacteriamediated hypoxia–specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016, 16, 3493–3499.

    Article  Google Scholar 

  66. Felfoul, O.; Mohammadi, M.; Taherkhani, S.; De Lanauze, D.; Xu, Y. Z.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M. et al. Magneto–aerotactic bacteria deliver drugcontaining nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016, 11, 941–947.

    Article  Google Scholar 

  67. Din, M. O.; Danino, T.; Prindle, A.; Skalak, M.; Selimkhanov, J.; Allen, K.; Julio, E.; Atolia, E.; Tsimring, L. S.; Bhatia, S. N. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 2016, 536, 81–85.

    Article  Google Scholar 

  68. Xiang, S. L.; Fruehauf, J.; Li, C. J. Short hairpin RNAexpressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 2006, 24, 697–702.

    Article  Google Scholar 

  69. Gujrati, V.; Kim, S.; Kim, S. H.; Min, J. J.; Choy, H. E.; Kim, S. C.; Jon, S. Bioengineered bacterial outer membrane vesicles as cell–specific drug–delivery vehicles for cancer therapy. ACS Nano 2014, 8, 1525–1537.

    Article  Google Scholar 

  70. Fan, J. X.; Li, Z. H.; Liu, X. H.; Zheng, D. W.; Chen, Y.; Zhang, X. Z. Bacteria–mediated tumor therapy utilizing photothermally–controlled TNF–α expression via oral administration. Nano Lett. 2018, 18, 2373–2380.

    Article  Google Scholar 

  71. Sivan, A.; Corrales, L.; Hubert, N.; Williams, J. B.; Aquino–Michaels, K.; Earley, Z. M.; Benyamin, F. W.; Lei, Y. M.; Jabri, B.; Alegre, M. L. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD–L1 efficacy. Science 2015, 350, 1084–1089.

    Article  Google Scholar 

  72. Matson, V.; Fessler, J.; Bao, R. Y.; Chongsuwat, T.; Zha, Y. Y.; Alegre, M. L.; Luke, J. J.; Gajewski, T. F. The commensal microbiome is associated with anti–PD–1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108.

    Article  Google Scholar 

  73. Gopalakrishnan, V.; Spencer, C. N.; Nezi, L.; Reuben, A.; Andrews, M. C.; Karpinets, T. V.; Prieto, P. A.; Vicente, D.; Hoffman, K.; Wei, S. C. et al. Gut microbiome modulates response to anti–PD–1 immunotherapy in melanoma patients. Science 2018, 359, 97–103.

    Article  Google Scholar 

  74. Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C. P. M.; Alou, M. T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M. P. et al. Gut microbiome influences efficacy of PD–1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97.

    Article  Google Scholar 

  75. Ma, C.; Han, M. J.; Heinrich, B.; Fu, Q.; Zhang, Q. F.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J. A.; Fako, V. et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 2018, 360, eaan5931.

    Article  Google Scholar 

  76. Geller, L. T.; Barzily–Rokni, M.; Danino, T.; Jonas, O. H.; Shental, N.; Nejman, D.; Gavert, N.; Zwang, Y.; Cooper, Z. A.; Shee, K. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017, 357, 1156–1160.

    Article  Google Scholar 

  77. Bagnis, C.; Chiaroni, J.; Bailly, P. Elimination of blood group antigens: Hope and reality. Br. J Haematol. 2011, 152, 392–400.

    Article  Google Scholar 

Download references

Acknowledges

This work was supported by the National Natural Science Foundation of China (No. 81673381), the Natural Science Foundation of Jiangsu Province of China for Distinguished Young Scholars (No. BK20150029), the Program for Jiangsu Province Innovative Research Talents, and the Program for Jiangsu Province Innovative Research Team.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Can Zhang or Ran Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Dong, H., Zhang, C. et al. Cell-based drug delivery systems for biomedical applications. Nano Res. 11, 5240–5257 (2018). https://doi.org/10.1007/s12274-018-2179-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2179-5

Keywords

Navigation