Skip to main content
Log in

Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) semiconductors, represented by 2D transition metal dichalcogenides (TMDs), exhibit rich valley physics due to strong spin-orbit/spin-valley coupling. The most common way to probe such 2D systems is to utilize optical methods, which can monitor light emissions from various excitonic states and further help in understanding the physics behind such phenomena. Therefore, 2D TMDs with good optical quality are in great demand. Here, we report a method to directly grow epitaxial WS2 and MoS2 monolayers on hexagonal boron nitride (hBN) flakes with a high yield and high optical quality; these monolayers show better intrinsic light emission features than exfoliated monolayers from natural crystals. For the first time, the valley Zeeman splitting of WS2 and MoS2 monolayers on hBN has been visualized and systematically investigated. This study paves a new way to produce high optical quality WS2 and MoS2 monolayers and to exploit their intrinsic properties in a multitude of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

    Article  Google Scholar 

  2. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.

    Article  Google Scholar 

  3. Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2015, 2, 57–70.

    Article  Google Scholar 

  4. Peng, B.; Ang, P. K.; Loh, K. P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 2015, 10, 128–137.

    Article  Google Scholar 

  5. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

    Article  Google Scholar 

  6. Wu, S. F.; Buckley, S.; Schaibley, J. R.; Feng, L. F.; Yan, J. Q.; Mandrus, D. G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72.

    Article  Google Scholar 

  7. Ye, Y.; Wong, Z. J.; Lu, X. F.; Ni, X. J.; Zhu, H. Y.; Chen, X. H.; Wang, Y.; Zhang, X. Monolayer excitonic laser. Nat. Photonics 2015, 9, 733–737.

    Article  Google Scholar 

  8. Zhang, Y. J.; Oka, T.; Suzuki, R.; Ye, J. T.; Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 2014, 344, 725–728.

    Article  Google Scholar 

  9. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

    Article  Google Scholar 

  10. Eda, G.; Maier, S. A. Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660–5665.

    Article  Google Scholar 

  11. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  12. Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

    Article  Google Scholar 

  13. Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

    Article  Google Scholar 

  14. Shang, J. Z.; Cong, C. X.; Wang, Z. L.; Peimyoo, N.; Wu, L. S.; Zou, C. J.; Chen, Y.; Chin, X. Y.; Wang, J. P.; Soci, C. et al. Room-temperature 2D semiconductor activated verticalcavity surface-emitting lasers. Nat. Commun. 2017, 8, 543.

    Article  Google Scholar 

  15. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    Article  Google Scholar 

  16. Gong, Y. J.; Ye, G. L.; Lei, S. D.; Shi, G.; He, Y. M.; Lin, J. H.; Zhang, X.; Vajtai, R.; Pantelides, S. T.; Zhou, W. et al. Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater. 2016, 26, 2009–2015.

    Article  Google Scholar 

  17. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  Google Scholar 

  18. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  19. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    Article  Google Scholar 

  20. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  Google Scholar 

  21. Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

    Article  Google Scholar 

  22. Zhao, W. F.; Yu, H.; Liao, M. Z.; Zhang, L.; Zou, S. Z.; Yu, H. J.; He, C. J.; Zhang, J. Y.; Zhang, G. Y.; Lin, X. C. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking. Semicond. Sci. Technol. 2017, 32, 025013.

    Article  Google Scholar 

  23. Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.

    Article  Google Scholar 

  24. Okada, M.; Sawazaki, T.; Watanabe, K.; Taniguch, T.; Hibino, H.; Shinohara, H.; Kitaura, R. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano 2014, 8, 8273–8277.

    Article  Google Scholar 

  25. Kobayashi, Y.; Sasaki, S.; Mori, S.; Hibino, H.; Liu, Z.; Watanabe, K.; Taniguchi, T.; Suenaga, K.; Maniwa, Y.; Miyata, Y. Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 2015, 9, 4056–4063.

    Article  Google Scholar 

  26. Cadiz, F.; Courtade, E.; Robert, C.; Wang, G.; Shen, Y.; Cai, H.; Taniguchi, T.; Watanabe, K.; Carrere, H.; Lagarde, D. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 2017, 7, 021026.

    Google Scholar 

  27. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 2015, 10, 534–540.

    Article  Google Scholar 

  28. Jin, C. H.; Kim, J.; Suh, J.; Shi, Z. W.; Chen, B.; Fan, X.; Kam, M.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Interlayer electron-phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 2017, 13, 127–131.

    Article  Google Scholar 

  29. Wang, Z. F.; Shan, J.; Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 2016, 12, 144–149.

    Article  Google Scholar 

  30. Ajayi, O. A.; Ardelean, J. V.; Shepard, G. D.; Wang, J.; Antony, A.; Taniguchi, T.; Watanabe, K.; Heinz, T. F.; Strauf, S.; Zhu, X. Y. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 2017, 4, 031011.

    Article  Google Scholar 

  31. Manca, M.; Glazov, M. M.; Robert, C.; Cadiz, F.; Taniguchi, T.; Watanabe, K.; Courtade, E.; Amand, T.; Renucci, P.; Marie, X. et al. Enabling valley selective exciton scattering in monolayer WSe2 through upconversion. Nat. Commun. 2017, 8, 14927.

    Article  Google Scholar 

  32. Chow, C. M.; Yu, H. Y.; Jones, A. M.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Yao, W.; Xu, X. D. Unusual exciton-phonon interactions at van der Waals engineered interfaces. Nano Lett. 2017, 17, 1194–1199.

    Article  Google Scholar 

  33. Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.

    Article  Google Scholar 

  34. Yan, A. M.; Velasco, J.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324–6331.

    Article  Google Scholar 

  35. Okada, M.; Miyauchi, Y.; Matsuda, K.; Taniguchi, T.; Watanabe, K.; Shinohara, H.; Kitaura, R. Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride. Sci. Rep. 2017, 7, 322.

    Article  Google Scholar 

  36. MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zólyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

    Article  Google Scholar 

  37. Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

    Article  Google Scholar 

  38. Li, Y. L.; Ludwig, J.; Low, T.; Chernikov, A.; Cui, X.; Arefe, G.; Kim, Y. D.; van der Zande, A. M.; Rigosi, A.; Hill, H. M. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett. 2014, 113, 266804.

    Article  Google Scholar 

  39. Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoğlu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141–147.

    Article  Google Scholar 

  40. Wang, G.; Bouet, L.; Lagarde, D.; Vidal, M.; Balocchi, A.; Amand, T.; Marie, X.; Urbaszek, B. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.

    Article  Google Scholar 

  41. Zhu, C. R.; Zhang, K.; Glazov, M.; Urbaszek, B.; Amand, T.; Ji, Z. W.; Liu, B. L.; Marie, X. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302.

    Article  Google Scholar 

  42. Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

    Article  Google Scholar 

  43. Shang, J. Z.; Cong, C. X.; Shen, X. N.; Yang, W. H.; Zou, C. J.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Lin, W.; Huang, W. et al. Revealing electronic nature of broad bound exciton bands in two-dimensional semiconducting WS2 and MoS2. Phys. Rev. Mater. 2017, 1, 074001.

    Article  Google Scholar 

  44. Christopher, J. W.; Goldberg, B. B.; Swan, A. K. Long tailed trions in monolayer MoS2: Temperature dependent asymmetry and resulting red-shift of trion photoluminescence spectra. Sci. Rep. 2017, 7, 14062.

    Article  Google Scholar 

  45. Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 2013, 3, 1755.

    Article  Google Scholar 

  46. Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 2014, 14, 4592–4597.

    Article  Google Scholar 

  47. Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

    Article  Google Scholar 

  48. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.

    Article  Google Scholar 

  49. Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.

    Article  Google Scholar 

  50. Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.

    Article  Google Scholar 

  51. Szyniszewski, M.; Mostaani, E.; Drummond, N. D.; Fal’ko, V. I. Binding energies of trions and biexcitons in twodimensional semiconductors from diffusion quantum Monte Carlo calculations. Phys. Rev. B 2017, 95, 081301.

    Article  Google Scholar 

  52. Zhang, D. K.; Kidd, D. W.; Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002–7005.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61774040, 11774170, and 61774042), the Opening project of State Key Laboratory of Functional Materials for Informatics (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences), the National Young 1000 Talent Plan of China, the Shanghai Municipal Natural Science Foundation (Nos. 16ZR1402500, 17ZR1446500, and 17ZR1446600), NTU Start-up grant M4080513, Singapore Ministry of Education (MOE) Tier 1 RG199/17, and Shanghai Pujiang Program (No. 16PJ1401000). C. C. thanks Dr. Ute Schmidt from WITec Company for AFM measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxiao Cong, Jingzhi Shang, Zhijun Qiu or Ting Yu.

Electronic supplementary material

12274_2018_2142_MOESM1_ESM.pdf

Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, C., Zou, C., Cao, B. et al. Intrinsic excitonic emission and valley Zeeman splitting in epitaxial MS2 (M = Mo and W) monolayers on hexagonal boron nitride. Nano Res. 11, 6227–6236 (2018). https://doi.org/10.1007/s12274-018-2142-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2142-5

Keywords

Navigation