Skip to main content
Log in

Facile synthesis of Pd concave nanocubes: From kinetics to mechanistic understanding and rationally designed protocol

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a rationally designed one-pot method for the facile synthesis of Pd concave nanocubes in an aqueous solution at room temperature by manipulating the reduction kinetics through the selection of a proper combination of a salt precursor (PdBr42–) and reductant (sodium ascorbate). Our kinetic analysis demonstrates that, through this selection, the nucleation and growth of Pd nanocrystals could be effectively separated into two kinetic regimes involving distinctive reduction pathways: i) solution reduction for the initial formation of single-crystal seeds and ii) surface reduction for the formation of concave nanocrystals via autocatalytic growth from the single-crystal seeds. The suppressed surface diffusion at room temperature, when coupled with the capping effect of bromide ions, ultimately leads to the formation of concave nanocubes with an asymmetric shape and high-index facets, whose synthesis would otherwise require multiple steps and the use of elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.

    Article  Google Scholar 

  2. Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. D. Adv. Mater. 2009, 21, 2288–2293.

    Article  Google Scholar 

  3. Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nano 2010, 4, 1987–1996.

    Article  Google Scholar 

  4. Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine- mediated shape evolution of palladium nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 6315–6319.

    Article  Google Scholar 

  5. Wang, Y.; Xie, S. F.; Liu, J. Y.; Park, J.; Huang, C. Z.; Xia, Y. N. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013, 13, 2276–2281.

    Article  Google Scholar 

  6. Huang, H. W.; Wang, Y.; Ruditskiy, A.; Peng, H.-C.; Zhao, X.; Zhang, L.; Liu, J. Y.; Ye, Z. Z.; Xia, Y. N. Polyol syntheses of palladium decahedra and icosahedra as pure samples by maneuvering the reaction kinetics with additives. ACS Nano 2014, 8, 7041–7050.

    Article  Google Scholar 

  7. Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. M. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.

    Article  Google Scholar 

  8. Cheong, S.; Watt, J. D.; Tilley, R. D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2010, 2, 2045–2053.

    Article  Google Scholar 

  9. Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high- index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581.

    Article  Google Scholar 

  10. Wang, F.; Li, C. H.; Sun, L.-D.; Wu, H. S.; Ming, T.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J. Am. Chem. Soc. 2011, 133, 1106–1111.

    Article  Google Scholar 

  11. Deng, Y.-J.; Tian, N.; Zhou, Z.-Y.; Huang, R.; Liu, Z.-L.; Xiao, J.; Sun, S.-G. Alloy tetrahexahedral Pd-Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem. Sci. 2012, 3, 1157–1161.

    Article  Google Scholar 

  12. Wang, F.; Li, C. H.; Sun, L.-D.; Xu, C.-H.; Wang, J. F.; Yu, J. C.; Yan, C.-H. Porous single-crystalline palladium nanoparticles with high catalytic activities. Angew. Chem., Int. Ed. 2012, 51, 4872–4876.

    Article  Google Scholar 

  13. Collins, G.; Schmidt, M.; O’Dwyer, C.; McGlacken, G.; Holmes, J. D. Enhanced catalytic activity of high-index faceted palladium nanoparticles in suzuki–miyaura coupling due to efficient leaching mechanism. ACS Catal. 2014, 4, 3105–3111.

    Article  Google Scholar 

  14. Quan, Z. W.; Wang, Y. X.; Fang, J. Y. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

    Article  Google Scholar 

  15. Xia, Y. N.; Gilroy, K. D.; Peng, H.-C.; Xia, X. H. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 60–95.

    Article  Google Scholar 

  16. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Article  Google Scholar 

  17. Berhault, G.; Bausach, M.; Bisson, L.; Becerra, L.; Thomazeau, C.; Uzio, D. Seed-mediated synthesis of Pd nanocrystals: Factors influencing a kinetic- or thermodynamic-controlled growth regime. J. Phys. Chem. C 2007, 111, 5915–5925.

    Article  Google Scholar 

  18. Xia, Y. N.; Xia, X. H.; Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Article  Google Scholar 

  19. Zhang, J. F.; Feng, C.; Deng, Y. D.; Liu, L.; Wu, Y. T.; Shen, B.; Zhong, C.; Hu, W. B. Shape-controlled synthesis of palladium single-crystalline nanoparticles: The effect of HCl oxidative etching and facet-dependent catalytic properties. Chem. Mater. 2014, 26, 1213–1218.

    Article  Google Scholar 

  20. Ruditskiy, A.; Vara, M.; Huang, H. W.; Xia, Y. N. Oxidative etching of Pd decahedral nanocrystals with a penta-twinned structure and its impact on their growth behavior. Chemistry of Materials 2017, 29, 5394–5400.

    Article  Google Scholar 

  21. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem., Int. Ed. 2011, 50, 7850–7854.

    Article  Google Scholar 

  22. Niu, W. X.; Zhang, W. Q.; Firdoz, S.; Lu, X. M. Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property. Chem. Mater. 2014, 26, 2180–2186.

    Article  Google Scholar 

  23. Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P. Structure sensitive chemical reactivity by palladium concave nanocubes and nanoflowers synthesised by a seed mediated procedure in aqueous medium. Nanoscale 2014, 6, 7496–7502.

    Article  Google Scholar 

  24. Zhang, J. W.; Zhang, L.; Xie, S. F.; Kuang, Q.; Han, X. G.; Xie, Z. X.; Zheng, L. S. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chem.—Eur. J. 2011, 17, 9915–9919.

    Article  Google Scholar 

  25. Liu, S.-Y.; Shen, Y.-T.; Chiu, C.-Y.; Rej, S.; Lin, P.-H.; Tsao, Y.-C.; Huang, M. H. Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir 2015, 31, 6538–6545.

    Article  Google Scholar 

  26. Xie, X. B.; Gao, G. H.; Pan, Z. Y.; Wang, T. J.; Meng, X. Q.; Cai, L. T. Large-scale synthesis of palladium concave nanocubes with high-index facets for sustainable enhanced catalytic performance. Sci. Rep. 2015, 5, 8515.

    Article  Google Scholar 

  27. Elding, L. I. Palladium(II) halide complexes. I. Stabilities and spectra of palladium(II) chloro and bromo aqua complexes. Inorg. Chim. Acta. 1972, 6, 647–651.

    Article  Google Scholar 

  28. Elding, L. I. Stabilities of platinum(II) chloro and bromo complexes and kinetics for anation of the tetraaquaplatinum(II) ion by halides and thiocyanate. Inorg. Chim. Acta. 1978, 28, 255–262.

    Article  Google Scholar 

  29. Elding, L. I.; Olsson, L. F. Electronic absorption spectra of square-planar chloro-aqua and bromo-aqua complexes of palladium(II) and platinum(II). J. Phys. Chem. 1978, 82, 69–74.

    Article  Google Scholar 

  30. Vara, M.; Lu, P.; Yang, X.; Lee, C.-T.; Xia, Y. N. A photochemical, room-temperature, and aqueous route to the synthesis of Pd nanocubes enriched with atomic steps and terraces on the side faces. Chem. Mater. 2017, 29, 4563–4571.

    Article  Google Scholar 

  31. Peng, H.-C.; Li, Z. M.; Aldahondo, G.; Huang, H. W.; Xia, Y. N. Seed-mediated synthesis of Pd nanocrystals: The effect of surface capping on the heterogeneous nucleation and growth. J. Phys. Chem. C 2016, 120, 11754–11761.

    Article  Google Scholar 

  32. Wang, Y.; Peng, H.-C.; Liu, J. Y.; Huang, C. Z.; Xia, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445–1450.

    Article  Google Scholar 

  33. Yang, T.-H.; Peng, H.-C.; Zhou, S.; Lee, C.-T.; Bao, S. X.; Lee, Y.-H.; Wu, J.-M.; Xia, Y. N. Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 2017, 17, 334–340.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the National Science Foundation (No. DMR-1506018) and startup funds from Georgia Tech. The electron microscopy studies were performed at the Georgia Tech’s Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (No. ECCS-1542174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vara, M., Xia, Y. Facile synthesis of Pd concave nanocubes: From kinetics to mechanistic understanding and rationally designed protocol. Nano Res. 11, 3122–3131 (2018). https://doi.org/10.1007/s12274-018-1967-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1967-2

Keywords

Navigation