Skip to main content
Log in

Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A method based on the adsorption of ions on the surface of two-dimensional (2D) nanosheets has been developed for photocatalytic CO2 reduction. Isolated Bi ions, confined on the surface of TiO2 nanosheets using a simple ionic adsorption method facilitate the formation of a built-in electric field that effectively promotes charge carrier separation. This leads to an improved performance of the photocatalytic CO2 reduction process with the preferred conversion to CH4. The proposed surface ion-adsorption method is expected to provide an effective approach for the design of highly efficient photocatalytic systems. These findings could be very valuable in photocatalytic CO2 reduction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

    Article  Google Scholar 

  2. Schneider, J.; Jia, H. F.; Muckerman, J. T.; Fujita, E. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 2012, 41, 2036–2051.

    Article  Google Scholar 

  3. Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973.

    Article  Google Scholar 

  4. Ouyang, T.; Huang, H. H.; Wang, J. W.; Zhong, D. C.; Lu, T. B. A dinuclear cobalt cryptate as a homogeneous photocatalyst for highly selective and efficient visible–light driven CO2 reduction to CO in CH3CN/H2O solution. Angew. Chem., Int. Ed. 2017, 56, 738–743.

    Article  Google Scholar 

  5. Neatu, Ş.; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

    Article  Google Scholar 

  6. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  Google Scholar 

  7. Chang, X. X.; Wang, T.; Zhang, P.; Wei, Y. J.; Zhao, J. B.; Gong, J. L. Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew. Chem., Int. Ed. 2016, 55, 8840–8845.

    Article  Google Scholar 

  8. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

    Article  Google Scholar 

  9. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528–1547.

    Article  Google Scholar 

  10. Liu, X.; Inagaki, S.; Gong, J. L. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem., Int. Ed. 2016, 55, 14924–14950.

    Article  Google Scholar 

  11. Akimov, A. V.; Asahi, R.; Jinnouchi, R.; Prezhdo, O. V. What makes the photocatalytic CO2 reduction on N-doped Ta2O5 efficient: Insights from nonadiabatic molecular dynamics. J. Am. Chem. Soc. 2015, 137, 11517–11525.

    Article  Google Scholar 

  12. Li, H. Y.; Gan, S. Y.; Wang, H. Y.; Han, D. X.; Niu, L. Intercorrelated superhybrid of AgBr supported on graphitic-C3N4-decorated nitrogen-doped graphene: High engineering photocatalytic activities for water purification and CO2 reduction. Adv. Mater. 2015, 27, 6906–6913.

    Article  Google Scholar 

  13. Huang, J. H.; Shang, Q. C.; Huang, Y. Y.; Tang, F. M.; Zhang, Q.; Liu, Q. H.; Jiang, S.; Hu, F. C.; Liu, W.; Luo, Y. et al. Oxyhydroxide nanosheets with highly efficient electron–hole pair separation for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 2137–2141.

    Article  Google Scholar 

  14. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    Article  Google Scholar 

  15. Li, J.; Zhan, G. M.; Yu, Y.; Zhang, L. Z. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 2016, 7, 11480.

    Article  Google Scholar 

  16. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Article  Google Scholar 

  17. Bi, W. T.; Li, X. G.; Zhang, L.; Jin, T.; Zhang, L. D.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 2015, 6, 8647.

    Article  Google Scholar 

  18. Liu, G. G.; Wang, T.; Zhang, H. B.; Meng, X. G.; Hao, D.; Chang, K.; Li, P.; Kako, T.; Ye, J. H. Nature-inspired environmental “phosphorylation” boosts photocatalytic H2 production over carbon nitride nanosheets under visiblelight irradiation. Angew. Chem., Int. Edit. 2015, 54, 13561–13565.

    Article  Google Scholar 

  19. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  20. Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical-modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646.

    Article  Google Scholar 

  21. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

    Article  Google Scholar 

  22. Zhu, X. J.; Guo, Y. Q.; Cheng, H.; Dai, J.; An, X. D.; Zhao, J. Y.; Tian, K. Z.; Wei, S. Q.; Zeng, X. C.; Wu, C. Z. et al. Signature of coexistence of superconductivity and ferromagnetism in two-dimensional NbSe2 triggered by surface molecular adsorption. Nat. Commun. 2016, 7, 11210.

    Article  Google Scholar 

  23. Mi, S. Y.; Liu, Y. X.; Wang, W. D. Photo-depositing Ru and RuO2 on anatase TiO2 nanosheets as Co-catalysts for photocatalytic O2 evolution from water oxidation. Chin. J. Chem. Phys. 2016, 29, 585–590.

    Article  Google Scholar 

  24. Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

    Article  Google Scholar 

  25. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  Google Scholar 

  26. Li, X. G.; Bi, W. T.; Zhang, L.; Tao, S.; Chu, W. S.; Zhang, Q.; Luo, Y.; Wu, C. Z.; Xie, Y. Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    Article  Google Scholar 

  27. Ji, S. F.; Chen, Y. J.; Fu, Q.; Chen, Y. F.; Dong, J. C.; Chen, W. X.; Li, Z.; Wang, Y.; Gu, L.; He, W. et al. Confined pyrolysis within metal–organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J. Am. Chem. Soc. 2017, 139, 9795–9798.

    Article  Google Scholar 

  28. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  Google Scholar 

  29. Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206.

    Article  Google Scholar 

  30. Lu, Y. C.; Lin, Y. H.; Wang, D. J.; Wang, L. L.; Xie, T. F.; Jiang, T. F. A high performance cobalt-doped ZnO visible light photocatalyst and its photogenerated charge transfer properties. Nano Res. 2011, 4, 1144–1152.

    Article  Google Scholar 

  31. Liu, Z. Y.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett. 2007, 7, 1081–1085.

    Article  Google Scholar 

  32. Li, H. Y.; Wang, D. J.; Fan, H. M.; Jiang, T. F.; Li, X. L.; Xie, T. F. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visible-light photocatalyst. Nano Res. 2011, 4, 460–469.

    Article  Google Scholar 

  33. Xin, B. F.; Jing, L. Q.; Ren, Z. Y.; Wang, B. Q.; Fu, H. G. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. B 2005, 109, 2805–2809.

    Article  Google Scholar 

  34. Peng, L. L.; Xie, T. F.; Lu, Y. C.; Fan, H. M.; Wang, D. J. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 2010, 12, 8033–8041.

    Article  Google Scholar 

  35. Gross, D.; Mora-Sero, I.; Dittrich, T.; Belaidi, A.; Mauser, C.; Houtepen, A. J.; Da Como, E.; Rogach, A. L.; Feldmann, J. Charge separation in type II tunneling multilayered structures of CdTe and CdSe nanocrystals directly proven by surface photovoltage spectroscopy. J. Am. Chem. Soc. 2010, 132, 5981–5983.

    Article  Google Scholar 

  36. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  Google Scholar 

  37. Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  Google Scholar 

  38. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  42. Anisimov, V. I.; Zaanen, J.; Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of stoner I. Phys. Rev. B 1991, 44, 943–954.

    Article  Google Scholar 

  43. Methfessel, M.; Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2015CB932302), National Natural Science Foundation of China (Nos. U1432133, 11621063, 21701164, and 11374273), National Program for Support of Top-notch Young Professionals and the Fundamental Research Funds for the Central Universities (Nos. WK2060190084, WK2060190058, and WK2340000063). We also appreciate the support from the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangsheng Chu or Changzheng Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Bi, W., Wang, Z. et al. Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction. Nano Res. 11, 3362–3370 (2018). https://doi.org/10.1007/s12274-017-1933-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1933-4

Keywords

Navigation