Skip to main content
Log in

Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A nanofabrication method for the production of ultra-dense planar metallic nanowire arrays scalable to wafer-size is presented. The method is based on an efficient template deposition process to grow diverse metallic nanowire arrays with extreme regularity in only two steps. First, III–V semiconductor substrates are irradiated by a low-energy ion beam at an elevated temperature, forming a highly ordered nanogroove pattern by a “reverse epitaxy” process due to self-assembly of surface vacancies. Second, diverse metallic nanowire arrays (Au, Fe, Ni, Co, FeAl alloy) are fabricated on these III–V templates by deposition at a glancing incidence angle. This method allows for the fabrication of metallic nanowire arrays with periodicities down to 45 nm scaled up to wafer-size fabrication. As typical noble and magnetic metals, the Au and Fe nanowire arrays produced here exhibited large anisotropic optical and magnetic properties, respectively. The excitation of localized surface plasmon resonances (LSPRs) of the Au nanowire arrays resulted in a high electric field enhancement, which was used to detect phthalocyanine (CoPc) in surface-enhanced Raman scattering (SERS). Furthermore, the Fe nanowire arrays showed a very high in-plane magnetic anisotropy of approximately 412 mT, which may be the largest in-plane magnetic anisotropy field yet reported that is solely induced via shape anisotropy within the plane of a thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  2. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  Google Scholar 

  3. Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Singlecrystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 2004, 430, 61–65.

    Article  Google Scholar 

  4. Teperik, T. V.; de Abajo, F. J. G.; Borisov, A. G.; Abdelsalam, M.; Bartlett, P. N.; Sugawara, Y.; Baumberg, J. J. Omnidirectional absorption in nanostructured metal surfaces. Nat. Photonics 2008, 2, 299–301.

    Article  Google Scholar 

  5. Kawamori, M.; Asai, T.; Shirai, Y.; Yagi, S.; Oishi, M.; Ichitsubo, T.; Matsubara, E. Three-dimensional nanoelectrode by metal nanowire nonwoven clothes. Nano Lett. 2014, 14, 1932–1937.

    Article  Google Scholar 

  6. Celle, C.; Mayousse, C.; Moreau, E.; Basti, H.; Carella, A.; Simonato, J. P. Highly flexible transparent film heaters based on random networks of silver nanowires. Nano Res. 2012, 5, 427–433.

    Article  Google Scholar 

  7. Wang, X.; Ozkan, C. S. Multisegment nanowire sensors for the detection of DNA molecules. Nano Lett. 2008, 8, 398–404.

    Article  Google Scholar 

  8. Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031.

    Article  Google Scholar 

  9. Petit, C.; Taleb, A.; Pileni, M. P. Self-organization of magnetic nanosized cobalt particles. Adv. Mater. 1998, 10, 259–261.

    Article  Google Scholar 

  10. Jung, Y. S.; Lee, J. H.; Lee, J. Y.; Ross, C. A. Fabrication of diverse metallic nanowire arrays based on block copolymer self-assembly. Nano Lett. 2010, 10, 3722–3726.

    Article  Google Scholar 

  11. Pang, Y. T.; Meng, G. W.; Zhang, L. D.; Qin, Y.; Gao, X. Y.; Zhao, A. W.; Fang, Q. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers. Adv. Funct. Mater. 2002, 12, 719–722.

    Article  Google Scholar 

  12. Zong, R. L.; Zhou, J.; Li, Q.; Du, B.; Li, B.; Fu, M.; Qi, X. W.; Li, L. T.; Buddhudu, S. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J. Phy. Chem. B 2004, 108, 16713–16716.

    Article  Google Scholar 

  13. Choi, J.; Oh, S. J.; Ju, H.; Cheon, J. Massive fabrication of free-standing one-dimensional Co/Pt nanostructures and modulation of ferromagnetism via a programmable barcode layer effect. Nano Lett. 2005, 5, 2179–2183.

    Article  Google Scholar 

  14. Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153.

    Article  Google Scholar 

  15. Sugawara, A.; Haga, Y.; Nittono, O. Self-alignment of metallic nanowires in CaF2-based composite films grown on stepped NaCl substrates. J. Magn. Magn. Mater. 1996, 156, 151–152.

    Article  Google Scholar 

  16. Teichert, C.; Lagally, M. G.; Peticolas, L. J.; Bean, J. C.; Tersoff, J. Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films. Phys. Rev. B 1996, 53, 16334–16337.

    Article  Google Scholar 

  17. Heffelfinger, J. R.; Bench, M. W.; Carter, C. B. On the faceting of ceramic surfaces. Surf. Sci. 1995, 343, L1161–L1166.

    Article  Google Scholar 

  18. Sugawara, A.; Coyle, T.; Hembree, G. G.; Scheinfein, M. R. Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates. Appl. Phys. Lett. 1997, 70, 1043–1045.

    Article  Google Scholar 

  19. Teichert, C.; Barthel, J.; Oepen, H. P.; Kirschner, J. Fabrication of nanomagnet arrays by shadow deposition on self-organized semiconductor substrates. Appl. Phys. Lett. 1999, 74, 588–590.

    Article  Google Scholar 

  20. Westphalen, A.; Zabel, H.; Theis-Bröhl, K. Magnetic nanowires on faceted sapphire surfaces. Thin Solid Films 2004, 449, 207–214.

    Article  Google Scholar 

  21. Facsko, S.; Dekorsy, T.; Koerdt, C.; Trappe, C.; Kurz, H.; Vogt, A.; Hartnagel, H. L. Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 1999, 285, 1551–1553.

    Article  Google Scholar 

  22. Bradley, R. M.; Harper, J. M. E. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 1988, 6, 2390–2395.

    Article  Google Scholar 

  23. Norris, S. A. Stress-induced patterns in ion-irradiated silicon: Model based on anisotropic plastic flow. Phys. Rev. B 2012, 86, 235405.

    Article  Google Scholar 

  24. Carter, G.; Vishnyakov, V. Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 1996, 54, 17647–17653.

    Article  Google Scholar 

  25. Ziberi, B.; Frost, F.; Höche, T.; Rauschenbach, B. Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: Experiment and theory. Phys. Rev. B 2005, 72, 235310.

    Article  Google Scholar 

  26. Mollick, S. A.; Ghose, D.; Shipman, P. D.; Mark Bradley, R. Anomalous patterns and nearly defect-free ripples produced by bombarding silicon and germanium with a beam of gold ions. Appl. Phys. Lett. 2014, 104, 043103.

    Article  Google Scholar 

  27. Toma, A.; Chiappe, D.; Massabò, D.; Boragno, C.; de Mongeot, F. B. Self-organized metal nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 2008, 93, 163104.

    Article  Google Scholar 

  28. Oates, T. W. H.; Keller, A.; Noda, S.; Facsko, S. Selforganized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl. Phys. Lett. 2008, 93, 063106.

    Article  Google Scholar 

  29. Ranjan, M.; Oates, T. W. H.; Facsko, S.; Möller, W. Optical properties of silver nanowire arrays with 35 nm periodicity. Opt. Lett. 2010, 35, 2576–2578.

    Article  Google Scholar 

  30. Ou, X.; Kögler, R.; Wei, X.; Mücklich, A.; Wang, X.; Skorupa, W.; Facsko, S. Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 2011, 1, 042174.

    Article  Google Scholar 

  31. Ou, X.; Keller, A.; Helm, M.; Fassbender, J.; Facsko, S. Reverse epitaxy of Ge: Ordered and faceted surface patterns. Phys. Rev. Lett. 2013, 111, 016101.

    Article  Google Scholar 

  32. Ou, X.; Heinig, K. H.; Hübner, R.; Grenzer, J.; Wang, X.; Helm, M.; Fassbender, J.; Facsko, S. Faceted nanostructure arrays with extreme regularity by self-assembly of vacancies. Nanoscale 2015, 7, 18928–18935.

    Article  Google Scholar 

  33. Chowdhury, D.; Ghose, D. Nanoripple formation on GaAs (001) surface by reverse epitaxy during ion beam sputtering at elevated temperature. Appl. Surf. Sci. 2016, 385, 410–416.

    Article  Google Scholar 

  34. Zhu, H. J.; Ramsteiner, M.; Kostial, H.; Wassermeier, M.; Schönherr, H. P.; Ploog, K. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 2001, 87, 016601.

    Article  Google Scholar 

  35. Chantis, A. N.; Belashchenko, K. D.; Smith, D. L.; Tsymbal, E. Y.; van Schilfgaarde, M.; Albers, R. C. Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: First-principles calculations. Phys. Rev. Lett. 2007, 99, 196603.

    Article  Google Scholar 

  36. Pierre-Louis, O.; D’Orsogna, M. R.; Einstein, T. L. Edge diffusion during growth: The kink Ehrlich–Schwoebel effect and resulting instabilities. Phys. Rev. Lett. 1999, 82, 3661–3664.

    Article  Google Scholar 

  37. Kneedler, E. M.; Jonker, B. T.; Thibado, P. M.; Wagner, R. J.; Shanabrook, B. V.; Whitman, L. J. Influence of substrate surface reconstruction on the growth and magnetic properties of fe on GaAs(001). Phys. Rev. B 1997, 56, 8163–8168.

    Article  Google Scholar 

  38. Schönherr, H.-P.; Nötzel, R.; Ma, W. Q.; Ploog, K. H. Evolution of the surface morphology of Fe grown on GaAs (100), (311)A, and (331)A substrates by molecular beam epitaxy. J. Appl. Phys. 2001, 89, 169–173.

    Article  Google Scholar 

  39. Hong, S. W.; Huh, J.; Gu, X. D.; Lee, D. H.; Jo, W. H.; Park, S.; Xu, T.; Russell, T. P. Unidirectionally aligned line patterns driven by entropic effects on faceted surfaces. Proc. Natl. Acad. Sci. USA 2012, 109, 1402–1406.

    Article  Google Scholar 

  40. Hong, S. W.; Voronov, D. L.; Lee, D. H.; Hexemer, A.; Padmore, H. A.; Xu, T.; Russell, T. P. Controlled orientation of block copolymers on defect-free faceted surfaces. Adv. Mater. 2012, 24, 4278–4283.

    Article  Google Scholar 

  41. Biermanns, A.; Pietsch, U.; Grenzer, J.; Hanisch, A.; Facsko, S.; Carbone, G.; Metzger, T. H. X-ray scattering and diffraction from ion beam induced ripples in crystalline silicon. J. Appl. Phys. 2008, 104, 044312.

    Article  Google Scholar 

  42. Garel, M.; Babonneau, D.; Boulle, A.; Pailloux, F.; Coati, A.; Garreau, Y.; Ramos, A. Y.; Tolentino, H. C. N. Self-organized ultrathin FePt nanowires produced by glancingangle ion-beam codeposition on rippled alumina surfaces. Nanoscale 2015, 7, 1437–1445.

    Article  Google Scholar 

  43. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576.

    Article  Google Scholar 

  44. Au, L.; Chen, Y.; Zhou, F.; Camargo, P. H. C.; Lim, B.; Li, Z. Y.; Ginger, D. S.; Xia, Y. N. Synthesis and optical properties of cubic gold nanoframes. Nano Res. 2008, 1, 441–449.

    Article  Google Scholar 

  45. Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 1997, 275, 1102–1106.

    Article  Google Scholar 

  46. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

    Article  Google Scholar 

  47. Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced raman scattering using ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.

    Article  Google Scholar 

  48. Johnson, P. B.; Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

    Article  Google Scholar 

  49. Sheremet, E.; Rodriguez, R. D.; Zahn, D. R. T.; Milekhin, A. G.; Rodyakina, E. E.; Latyshev, A. V. Surface-enhanced Raman scattering and gap-mode tip-enhanced Raman scattering investigations of phthalocyanine molecules on gold nanostructured substrates. J. Vac. Sci. Technol. B 2014, 32, 04E110.

    Article  Google Scholar 

  50. Qin, D. H.; Cao, L.; Sun, Q. Y.; Huang, Y.; Li, H. L. Fine magnetic properties obtained in FeCo alloy nanowire arrays. Chem. Phys. Lett. 2002, 358, 484–488.

    Article  Google Scholar 

  51. Wang, J.; Chen, Q.; Zeng, C.; Hou, B. Magnetic-fieldinduced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140.

    Article  Google Scholar 

  52. Chaure, N. B.; Stamenov, P.; Rhen, F. M. F.; Coey, J. M. D. Oriented cobalt nanowires prepared by electrodeposition in a porous membrane. J. Magn. Magn. Mater. 2005, 290–291, 1210–1213.

    Article  Google Scholar 

  53. Maurer, T.; Ott, F.; Chaboussant, G.; Soumare, Y.; Piquemal, J. Y.; Viau, G. Magnetic nanowires as permanent magnet materials. Appl. Phys. Lett. 2007, 91, 172501.

    Article  Google Scholar 

  54. Tseng, A. A.; Shirakashi, J.-I.; Nishimura, S.; Miyashita, K.; Notargiacomo, A. Scratching properties of nickel-iron thin film and silicon using atomic force microscopy. J. Appl. Phys. 2009, 106, 044314.

    Article  Google Scholar 

  55. Topp, J.; Heitmann, D.; Kostylev, M. P.; Grundler, D. Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. Phys. Rev. Lett. 2010, 104, 207205.

    Article  Google Scholar 

  56. Körner, M.; Lenz, K.; Gallardo, R. A.; Fritzsche, M.; Mücklich, A.; Facsko, S.; Lindner, J.; Landeros, P.; Fassbender, J. Twomagnon scattering in permalloy thin films due to rippled substrates. Phys. Rev. B 2013, 88, 054405.

    Article  Google Scholar 

  57. Hayashi, M.; Thomas, L.; Rettner, C.; Moriya, R.; Parkin, S. S. P. Direct observation of the coherent precession of magnetic domain walls propagating along permalloy nanowires. Nat. Phys. 2007, 3, 21–25.

    Article  Google Scholar 

  58. Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.

    Article  Google Scholar 

  59. Huang, H. T.; Ger, T. R.; Lin, Y. H.; Wei, Z. H. Single cell detection using a magnetic zigzag nanowire biosensor. Lab Chip 2013, 13, 3098–3104.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11622545 and U1732268), One Hundred Talent Program of CAS and the Deutsche Forschungsgemeinschaft (No. LE2443/5-1). R. D. R. acknowledges the supports from the DFG Unit SMINT FOR1713, Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number TPU CEP_IHTP_73\2017, and the EU COST Action MP 1302 Nanospectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Ou, X., Langer, M. et al. Ultra-dense planar metallic nanowire arrays with extremely large anisotropic optical and magnetic properties. Nano Res. 11, 3519–3528 (2018). https://doi.org/10.1007/s12274-017-1793-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1793-y

Keywords

Navigation