Skip to main content
Log in

Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Identification of atomic disorders and their subsequent control has proven to be a key issue in predicting, understanding, and enhancing the properties of newly emerging topological insulator materials. Here, we demonstrate direct evidence of the cation antisites in single-crystal SnBi2Te4 nanoplates grown by chemical vapor deposition, through a combination of sub-ångström-resolution imaging, quantitative image simulations, and density functional theory calculations. The results of these combined techniques revealed a recognizable amount of cation antisites between Bi and Sn, and energetic calculations revealed that such cation antisites have a low formation energy. The impact of the cation antisites was also investigated by electronic structure calculations together with transport measurement. The topological surface properties of the nanoplates were further probed by angle-dependent magnetotransport, and from the results, we observed a two-dimensional weak antilocalization effect associated with surface carriers. Our approach provides a pathway to identify the antisite defects in ternary chalcogenides and the application potential of SnBi2Te4 nanostructures in next-generation electronic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

    Article  Google Scholar 

  2. Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

    Article  Google Scholar 

  3. Chen, Z. G.; Han, G.; Yang, L.; Cheng, L. N.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. 2012, 22, 535–549.

    Article  Google Scholar 

  4. Redfern, S. A. T.; Henderson, C. M. B.; Wood, B. J.; Harrison, R. J.; Knight, K. S. Determination of olivine cooling rates from metal-cation ordering. Nature 1996, 381, 407–409.

    Article  Google Scholar 

  5. Álvarez, A. D.; Xu, T.; Tütüncüoglu, G.; Demonchaux, T.; Nys, J. P.; Berthe, M.; Matteini, F.; Potts, H. A.; Troadec, D.; Patriarche, G. et al. Nonstoichiometric low-temperature grown GaAs nanowires. Nano Lett. 2015, 15, 6440–6445.

    Article  Google Scholar 

  6. Chung, S. Y.; Choi, S. Y.; Kim, T. H.; Lee, S. Surfaceorientation- dependent distribution of subsurface cationexchange defects in olivine-phosphate nanocrystals. ACS Nano 2015, 9, 850–859.

    Article  Google Scholar 

  7. Scanlon, D. O.; King, P. D. C.; Singh, R. P.; de la Torre, A.; Walker, S. M.; Balakrishnan, G.; Baumberger, F.; Catlow, C. R. A. Controlling bulk conductivity in topological insulators: Key role of anti-site defects. Adv. Mater. 2012, 24, 2154–2158.

    Article  Google Scholar 

  8. Dai, J. X.; West, D.; Wang, X. Y.; Wang, Y. Z.; Kwok, D.; Cheong, S. W.; Zhang, S. B.; Wu, W. D. Toward the intrinsic limit of the topological insulator Bi2S3. Phys. Rev. Lett. 2016, 117, 106401.

    Article  Google Scholar 

  9. Zhu, T. J.; Liu, Y. T.; Fu, C. G.; Heremans, J. P.; Snyder, J. G.; Zhao, X. B. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 2017, 29, 1605884.

    Article  Google Scholar 

  10. Peranio, N.; Winkler, M.; Dürrschnabel, M.; König, J.; Eibl, O. Assessing antisite defect and impurity concentrations in Bi2Te3 based thin films by high-accuracy chemical analysis. Adv. Funct. Mater. 2013, 23, 4969–4976.

    Article  Google Scholar 

  11. Mehta, R. J.; Zhang, Y. L.; Zhu, H.; Parker, D. S.; Belley, M.; Singh, D. J.; Ramprasad, R.; Borca-Tasciuc, T.; Ramanath, G. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping. Nano Lett. 2012, 12, 4523–4529.

    Article  Google Scholar 

  12. Kim, J.; Kim, J.; Kim, K. S.; Jhi, S. H. Topological phase transition in the interaction of surface Dirac fermions in heterostructures. Phys. Rev. Lett. 2012, 109, 146601.

    Article  Google Scholar 

  13. Kuropatwa, B. A.; Kleinke, H. Thermoelectric properties of stoichiometric compounds in the (SnTe)x(Bi2Te3)y system. Z.Anorg. Allg. Chem. 2012, 638, 2640–2647.

    Article  Google Scholar 

  14. Kuropatwa, B. A.; Assoud, A.; Kleinke, H. Effects of cation site substitutions on the thermoelectric performance of layered SnBi2Te4 utilizing the triel elements Ga, In, and Tl. Z.Anorg. Allg. Chem. 2013, 639, 2411–2420.

    Article  Google Scholar 

  15. Shelimova, L. E.; Karpinskii, O. G.; Konstantinov, P. P.; Avilov, E. S.; Kretova, M. A.; Zemskov, V. S. Crystal structures and thermoelectric properties of layered compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) systems. Inorg. Mater. 2004, 40, 451–460.

    Article  Google Scholar 

  16. Zhukova, T. B.; Zaslavskii, A. I. Crystal structures of PbBi4Te7, PbBi2Te4, SnBi4Te7, SnBi2Te4, SnSb4Te7 and GeBi4Te7. Kristallografiya 1971, 16, 918.

    Google Scholar 

  17. Okamoto, K.; Kuroda, K.; Miyahara, H.; Miyamoto, K.; Okuda, T.; Aliev, Z. S.; Babanly, M. B.; Amiraslanov, I. R.; Shimada, K.; Namatame, H. et al. Observation of a highly spin-polarized topological surface state in GeBi2Te4. Phys. Rev. B 2012, 86, 195304.

    Article  Google Scholar 

  18. Casula, F.; Deiana, L.; Podda, A. Atomic arrangement in the mSnTe-nBi2Te3 compounds by electronic structure calculations. J. Phys. Condens. Matter 1991, 3, 1461.

    Article  Google Scholar 

  19. Ledda, F.; Muntoni, C.; Serci, S.; Pellerito, L. Ordering of metal atoms in the SnTe-Bi2Te3 system. Chem. Phys. Lett. 1987, 134, 545–548.

    Article  Google Scholar 

  20. Shin, D.; Saparov, B.; Mitzi, D. B. Defect engineering in multinary earth-abundant chalcogenide photovoltaic materials. Adv. Energy Mater. 2017, 7, 1602366.

    Article  Google Scholar 

  21. Huang, F. T.; Chu, M. W.; Kung, H. H.; Lee, W. L.; Sankar, R.; Liou, S. C.; Wu, K. K.; Kuo, Y. K.; Chou, F. C. Nonstoichiometric doping and Bi antisite defect in single crystal Bi2S3. Phys. Rev. B 2012, 86, 081104.

    Article  Google Scholar 

  22. Chung, S. Y.; Choi, S. Y.; Yamamoto, T.; Ikuhara, Y. Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 2008, 100, 125502.

    Article  Google Scholar 

  23. Yang, K. S.; Setyawan, W.; Wang, S. D.; Nardelli, M. B.; Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nat. Mater. 2012, 11, 614–619.

    Article  Google Scholar 

  24. Eremeev, S. V.; Landolt, G.; Menshchikova, T. V.; Slomski, B.; Koroteev, Y. M.; Aliev, Z. S.; Babanly, M. B.; Henk, J.; Ernst, A.; Patthey, L. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nat. Commun. 2012, 3, 635.

    Article  Google Scholar 

  25. Vergniory, M. G.; Menshchikova, T. V.; Silkin, I. V.; Koroteev, Y. M.; Eremeev, S. V.; Chulkov, E. V. Electronic and spin structure of a family of Sn-based ternary topological insulators. Phys. Rev. B 2015, 92, 045134.

    Article  Google Scholar 

  26. Papagno, M.; Eremeev, S. V.; Fujii, J.; Aliev, Z. S.; Babanly, M. B.; Mahatha, S. K.; Vobornik, I.; Mamedov, N. T.; Pacilé, D.; Chulkov, E. V. Multiple coexisting Dirac surface states in three-dimensional topological insulator PbBi6Te10. ACS Nano 2016, 10, 3518–3524.

    Article  Google Scholar 

  27. Kooi, B. J.; De Hosson, J. T. M. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x = 1, 2, 3) phase change material. J. Appl. Phys. 2002, 92, 3584–3590.

    Article  Google Scholar 

  28. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 2009, 8, 263–270.

    Article  Google Scholar 

  29. Koch, C. T. Determination of core structure periodicity and point defect density along dislocations. Ph. D. Dissertation, Arizona State University, Phoenix, AZ, USA, 2002.

    Google Scholar 

  30. Wang, Z. C.; Saito, M.; McKenna, K. P.; Gu, L.; Tsukimoto, S.; Shluger, A. L.; Ikuhara, Y. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries. Nature 2011, 479, 380–383.

    Article  Google Scholar 

  31. LeBeau, J. M.; Findlay, S. D.; Allen, L. J.; Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 2008, 100, 206101.

    Article  Google Scholar 

  32. Klenov, D. O.; Stemmer, S. Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 2006, 106, 889–901.

    Article  Google Scholar 

  33. Zhang, B.; Zhang, W.; Shen, Z. J.; Chen, Y. J.; Li, J. X.; Zhang, S. B.; Zhang, Z.; Wuttig, M.; Mazzarello, R.; Ma, E. et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 2016, 108, 191902.

    Article  Google Scholar 

  34. Tak, J. Y.; Lim, Y. S.; Kim, J. N.; Lee, C.; Shim, J. H.; Cho, H. K.; Park, C. H.; Seo, W. S. Thermoelectric transport properties of tetradymite-type Pb1–x SnxBi2Te4 compounds. J. Alloys Compd. 2017, 690, 966–970.

    Article  Google Scholar 

  35. Hong, M.; Chasapis, T. C.; Chen, Z. G.; Yang, L.; Kanatzidis, M. G.; Snyder, G. J.; Zou, J. n-type Bi2Te3–x Sex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 2016, 10, 4719–4727.

    Article  Google Scholar 

  36. Zhang, E. Z.; Liu, Y. W.; Wang, W. Y.; Zhang, C.; Zhou, P.; Chen, Z. G.; Zou, J.; Xiu, F. X. Magnetotransport properties of Cd3As2 nanostructures. ACS Nano 2015, 9, 8843–8850.

    Article  Google Scholar 

  37. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    Article  Google Scholar 

  38. Xiu, F. X.; He, L.; Wang, Y.; Cheng, L. N.; Chang, L. T.; Lang, M. R.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W.; Chen, Z. G.; Zou, J.; Shailos, A.; Wang, K. L. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216–221.

    Article  Google Scholar 

  39. Akiyama, R.; Fujisawa, K.; Yamaguchi, T.; Ishikawa, R.; Kuroda, S. Two-dimensional quantum transport of multivalley (111) surface state in topological crystalline insulator SnTe thin films. Nano Res. 2016, 9, 490–498.

    Article  Google Scholar 

  40. Cha, J. J.; Kong, D. S.; Hong, S. S.; Analytis, J. G.; Lai, K. J.; Cui, Y. Weak antilocalization in Bi2(SexTe1–x )3 nanoribbons and nanoplates. Nano Lett. 2012, 12, 1107–1111.

    Article  Google Scholar 

  41. Shen, J.; Xie, Y. J.; Cha, J. J. Revealing surface states in in-doped SnTenanoplates with low bulk mobility. Nano Lett. 2015, 15, 3827–3832.

    Article  Google Scholar 

  42. He, H. T.; Wang, G.; Zhang, T.; Sou, I. K.; Wong, G. K. L.; Wang, J. N.; Lu, H. Z.; Shen, S. Q.; Zhang, F. C. Impurity effect on weak antilocalization in the topological insulator Bi2Te3. Phys. Rev. Lett. 2011, 106, 166805.

    Article  Google Scholar 

  43. Hikami, S.; Larkin, A. I.; Nagaoka, Y. Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 1980, 63, 707–710.

    Article  Google Scholar 

  44. Peng, L. M.; Ren, G.; Dudarev, S. L.; Whelan, M. J. Debyewaller factors and absorptive scattering factors of elemental crystals. ActaCrystallogr. A 1996, 52, 456–470.

    Article  Google Scholar 

  45. Li, C. W.; Ma, J.; Cao, H. B.; May, A. F.; Abernathy, D. L.; Ehlers, G.; Hoffmann, C.; Wang, X.; Hong, T.; Huq, A. et al. Anharmonicity and atomic distribution of SnTe and PbTethermoelectrics. Phys. Rev. B 2014, 90, 214303.

    Article  Google Scholar 

  46. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  47. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  48. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 1994, 49, 16223.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Australian Research Council. Yichao Zou acknowledges the China Scholarship Council for providing her PhD stipend and the Graduate School of University of Queensland for providing the international travel award. Fantai Kong and Kyeongjae Cho were supported by Nano Material Technology Development Program (No. 2012M3A7B4049888) through the National Research Foundation of Korea (NRF) from the Ministry of Science, ICT and Future Planning, and Priority Research Center Program (No. 2010-0020207) through NRF from the Ministry of Education. The Australian Microscopy & Microanalysis Research Facility is acknowledged for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Gang Chen or Jin Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YC., Chen, ZG., Zhang, E. et al. Atomic disorders in layer structured topological insulator SnBi2Te4 nanoplates. Nano Res. 11, 696–706 (2018). https://doi.org/10.1007/s12274-017-1679-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1679-z

Keywords

Navigation