Skip to main content
Log in

Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The dimensional confinement endows ultrathin nanosheets with unique physical and chemical properties, which have been widely studied for the purpose of developing active electrocatalysts for water splitting. Ultrathin nanosheets are generally synthesized by chemical vapor deposition, exfoliation, or surfactant-assisted synthesis, which either require special equipment and reaction conditions, or is limited by the low yields and the difficulty in controlling the lateral size and structure of the nanosheets. In addition, achieving a high loading of ultrathin nanosheets on the electrodes without compromising their catalytic activity still remains a challenge. Herein, we report a simple electrodeposition method for preparing Co3O4 and Co(OH)2 ultrathin nanosheet arrays (UNA) without using templates or surfactants. The obtained arrays exhibit high activity for oxygen and hydrogen evolution reactions, in both alkaline and neutral media. The electrolyzer based on Co3O4 and Co(OH)2 UNA shows superior activity and stability than that based on IrO2 and Pt/C, which demonstrates the potential of the present electrodeposition method for developing active and stable electrocatalysts for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thoi, V. S.; Sun, Y. J.; Long, J. R.; Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem. Soc. Rev. 2013, 42, 2388–2400.

    Article  Google Scholar 

  2. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.

    Article  Google Scholar 

  3. Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; Van de Krol, R. Water-splitting catalysis and solar fuel devices: Artificial leaves on the move. Angew. Chem., Int. Ed. 2013, 52, 10426–10437.

    Article  Google Scholar 

  4. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  5. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  Google Scholar 

  6. Frame, F. A.; Townsend, T. K.; Chamousis, R. L.; Sabio, E. M.; Dittrich, T.; Browning, N. D.; Osterloh, F. E. Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. J. Am. Chem. Soc. 2011, 133, 7264–7267.

    Article  Google Scholar 

  7. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  8. Zhao, Y.; Zhao, F.; Wang, X. P.; Xu, C. Y.; Zhang, Z. P.; Shi, G. Q.; Qu, L. T. Graphitic carbon nitride nanoribbons: Graphene-assisted formation and synergic function for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 13934–13939.

    Article  Google Scholar 

  9. Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293–301.

    Article  Google Scholar 

  10. Liang, L.; Cheng, H.; Lei, F. C.; Han, J.; Gao, S.; Wang, C. M.; Sun, Y. F.; Qamar, S.; Wei, S. Q.; Xie, Y. Metallic singleunit- cell orthorhombic cobalt diselenide atomic layers: Robust water-electrolysis catalysts. Angew. Chem., Int. Ed. 2015, 54, 12004–12008.

    Article  Google Scholar 

  11. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  12. Huang, J. H.; Chen, J. T.; Yao, T.; He, J. F.; Jiang, S.; Sun, Z. H.; Liu, Q. H.; Cheng, W. R.; Hu, F. C.; Jiang, Y. et al. CoOOH nanosheets with high mass activity for water oxidation. Angew. Chem., Int. Ed. 2015, 54, 8722–8727.

    Article  Google Scholar 

  13. Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

    Article  Google Scholar 

  14. Liu, B. R.; Zhang, L.; Xiong, W. L.; Ma, M. M. Cobaltnanocrystal-assembled hollow nanoparticles for electrocatalytic hydrogen generation from neutral-pH water. Angew. Chem., Int. Ed. 2016, 55, 6725–6729.

    Article  Google Scholar 

  15. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    Article  Google Scholar 

  16. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  Google Scholar 

  17. Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061.

    Article  Google Scholar 

  18. Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 12594–12599.

    Google Scholar 

  19. Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J. Am. Chem. Soc. 2013, 135, 17699–17702.

    Article  Google Scholar 

  20. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    Article  Google Scholar 

  21. Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6254.

    Article  Google Scholar 

  22. Zhu, Y. P.; Liu, Y. P.; Ren, T. Z.; Yuan, Z. Y. Selfsupported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 2015, 25, 7337–7347.

    Article  Google Scholar 

  23. Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.

    Article  Google Scholar 

  24. Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

    Article  Google Scholar 

  25. Pu, Z. H.; Liu, Q.; Jiang, P.; Asiri, A. M.; Obaid, A. Y.; Sun, X. P. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chem. Mater. 2014, 26, 4326–4329.

    Article  Google Scholar 

  26. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  Google Scholar 

  27. Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

    Article  Google Scholar 

  28. Liu, Y. W.; Xiao, C.; Lyu, M. J.; Lin, Y.; Cai, W. Z.; Huang, P. C.; Tong, W.; Zou, Y. M.; Xie, Y. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew. Chem., Int. Ed. 2015, 54, 11231–11235.

    Article  Google Scholar 

  29. Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

    Article  Google Scholar 

  30. Morales-Guio, C. G.; Liardet, L.; Hu, X. L. Oxidatively electrodeposited thin-film transition metal (oxy) hydroxides as oxygen evolution catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957.

    Article  Google Scholar 

  31. Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

    Article  Google Scholar 

  32. Jiang, P.; Liu, Q.; Liang, Y. H.; Tian, J. Q.; Asiri, A. M.; Sun, X. P. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855–12859.

    Article  Google Scholar 

  33. Huang, Y. C.; Ye, K. H.; Li, H. B.; Fan, W. J.; Zhao, F. Y.; Zhang, Y. M.; Ji, H. B. A highly durable catalyst based on CoxMn3–x O4 nanosheets for low-temperature formaldehyde oxidation. Nano Res. 2016, 9, 3881–3892.

    Article  Google Scholar 

  34. Li, Z. H.; Shao, M. F.; An, H. L.; Wang, Z. X.; Xu, S. M.; Wei, M.; Evans, D. G.; Duan, X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem. Sci. 2015, 6, 6624–6631.

    Article  Google Scholar 

  35. Yuan, C. Z.; Yang, L.; Hou, L. R.; Shen, L. F.; Zhang, X. G.; Lou, X. W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883–7887.

    Article  Google Scholar 

  36. Fan, Y. Q.; Shao, H. B.; Wang, J. M.; Liu, L.; Zhang, J. Q.; Cao, C. N. Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. Chem. Commun. 2011, 47, 3469–3471.

    Article  Google Scholar 

  37. You, Y. X.; Zheng, M. J.; Ma, L. G.; Yuan, X. L.; Zhang, B.; Li, Q.; Wang, F. Z.; Song, J. N.; Jiang, D. K.; Liu, P. J. et al. Galvanic displacement assembly of ultrathin Co3O4 nanosheet arrays on nickel foam for a high-performance supercapacitor. Nanotechnology 2017, 28, 105604.

    Article  Google Scholar 

  38. O’sullivan, J. P.; Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminium. Proc. Roy. Soc. Lond. A 1970, 317, 511–543.

    Article  Google Scholar 

  39. Gong, F.; Wang, H.; Xu, X.; Zhou, G.; Wang, Z. S. In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 2012, 134, 10953–10958.

    Article  Google Scholar 

  40. Hou, Y.; Lohe, M. R.; Zhang, J.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Vertically oriented cobalt selenide/NiFe layereddouble- hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energ. Environ. Sci. 2016, 9, 478–483.

    Article  Google Scholar 

  41. Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem.—Eur. J. 2009, 15, 5320–5326.

    Article  Google Scholar 

  42. Gao, S.; Jiao, X. C.; Sun, Z. T.; Zhang, W. H.; Sun, Y. F.; Wang, C. M.; Hu, Q. T.; Zu, X. L.; Yang, F.; Yang, S. Y. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2016, 55, 698–702.

    Article  Google Scholar 

  43. Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

    Article  Google Scholar 

  44. Li, H. B.; Yu, M. H.; Lu, X. H.; Liu, P.; Liang, Y.; Xiao, J.; Tong, Y. X.; Yang, G. W. Amorphous cobalt hydroxide with superior pseudocapacitive performance. ACS Appl. Mater. Interfaces 2014, 6, 745–749.

    Article  Google Scholar 

  45. Zhang, Y.; Cui, B.; Qin, Z. T.; Lin, H.; Li, J. B. Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at neutral pH. Nanoscale 2013, 5, 6826–6833.

    Article  Google Scholar 

  46. Zhu, Y. C.; Li, H. L.; Koltypin, Y.; Gedanken, A. Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. J. Mater. Chem. 2002, 12, 729–733.

    Article  Google Scholar 

  47. Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

    Article  Google Scholar 

  48. Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693–697.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21474094, 81401531) and the Natural Science Foundation of Anhui Province (No. 1508085QH154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhang or Mingming Ma.

Electronic supplementary material

12274_2017_1634_MOESM1_ESM.pdf

Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liu, B., Zhang, N. et al. Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Res. 11, 323–333 (2018). https://doi.org/10.1007/s12274-017-1634-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1634-z

Keywords

Navigation