Skip to main content
Log in

Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, flexible electrodes with biaxial/omnidirectional stretchability have attracted significant attention. However, most existing pliable electrode materials can be only stretched in one direction. In this work, an unexpected isotropic van der Waals (vdW) heterostructure is proposed, based on the assembly of two-dimensional crystals of anisotropic black phosphorene (BP) and transition metal carbide (TiC2). Using vdW-corrected density functional theory calculations, the BP/TiC2 vdW heterostructure was predicted to have excellent structural and mechanical stability, superior electrical conductivity, omnidirectional flexibility, and a high Li storage capacity. We have unraveled the physical origin of the excellent stability, as well as the Li adsorption preferences of the lithiated heterostructure, based on a three-step analysis of the stability of the Li-adsorption processes. In addition, the BP/TiC2 vdW heterostructure can also be applied as the anode material for flexible Na-ion batteries because of its high Na storage capacity and strong Na binding. However, compared with Na adsorption, the capacity is higher, and the adsorption energy is more negative for Li adsorption. Our findings provide valuable insights into the exploration of a rich variety of vdW heterostructures for next-generation flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu, J. L.; Lu, W. B.; Pei, S. P.; Gong, K.; Wang, L. Y.; Meng, L. H.; Huang, Y. D.; Smith, J. P.; Booksh, K. S.; Li, Q. W. et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano 2016, 10, 5204–5211.

    Article  Google Scholar 

  2. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  3. Hao, C. X.; Yang, B. C.; Wen, F. S.; Xiang, J. Y.; Li, L.; Wang, W. H.; Zeng, Z. M.; Xu, B.; Zhao, Z. S.; Liu, Z. Y. et al. Flexible all-solid-state supercapacitors based on liquidexfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194–3201.

    Article  Google Scholar 

  4. Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    Article  Google Scholar 

  5. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

    Article  Google Scholar 

  6. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

    Article  Google Scholar 

  7. Zhang, W. J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 2011, 196, 13–24.

  8. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  9. Van Noorden, R. The rechargeable revolution: A better battery. Nature 2014, 507, 26–28.

    Article  Google Scholar 

  10. Nagaraju, G.; Ko, Y. H.; Cha, S. M.; Im, S. H.; Yu, J. S. A facile one-step approach to hierarchically assembled coreshell- like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 2016, 9, 1507–1522.

    Article  Google Scholar 

  11. Sun, J. Y.; Chen, Y. B.; Cai, X.; Ma, B. J.; Chen, Z. L.; Priydarshi, M. K.; Chen, K.; Gao, T.; Song, X. J.; Ji, Q. Q. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 2015, 8, 3496–3504.

    Article  Google Scholar 

  12. Sun, J.; Lee, H.-W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

    Article  Google Scholar 

  13. Hao, C. X.; Wen, F. S.; Xiang, J. Y.; Yuan, S. J.; Yang, B. C.; Li, L.; Wang, W. H.; Zeng, Z. M.; Wang, L. M.; Liu, Z. Y. et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Funct. Mater. 2016, 26, 2016–2024.

    Article  Google Scholar 

  14. Guo, Z. L.; Zhou, J.; Si, C.; Sun, Z. M. Flexible twodimensional Tin+1Cn(n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 2015, 17, 15348–15354.

    Article  Google Scholar 

  15. Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X. Q.; Nam, K. W.; Yang, X. Q.; Kolesnikov, A. I.; Kent, P. R. C. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

    Article  Google Scholar 

  16. Stephenson, T.; Li, Z.; Olsen, B.; Mitlin, D. Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ. Sci. 2014, 7, 209–231.

    Article  Google Scholar 

  17. Sa, B. S.; Sun, Z. M. Electron interactions and Dirac fermions in graphene-Ge2Sb2Te5 superlattices. J. Appl. Phys. 2014, 115, 233714.

    Article  Google Scholar 

  18. Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of threedimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

    Article  Google Scholar 

  19. Jiang, H.; Ren, D. Y.; Wang, H. F.; Hu, Y. J.; Guo, S. J.; Yuan, H. Y.; Hu, P. J.; Zhang, L.; Li, C. Z. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage. Adv. Mater. 2015, 27, 3687–3695.

    Google Scholar 

  20. Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Blue phosphorene/MS2 (M = Nb, Ta) heterostructures as promising flexible anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 13449–13457.

    Article  Google Scholar 

  21. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H.-C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  Google Scholar 

  22. Zhao, T. S.; Zhang, S. H.; Guo, Y. G.; Wang, Q. TiC2: A new two-dimensional sheet beyond MXenes. Nanoscale 2016, 8, 233–242.

    Article  Google Scholar 

  23. Wei, Q.; Peng, X. H. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 2014, 104, 251915.

    Article  Google Scholar 

  24. Sa, B. S.; Li, Y.-L.; Sun, Z. M.; Qi, J. S.; Wen, C. L.; Wu, B. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene. Nanotechnology 2015, 26, 215205.

    Article  Google Scholar 

  25. Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944–3953.

    Article  Google Scholar 

  26. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  Google Scholar 

  27. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Article  Google Scholar 

  28. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  29. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  31. Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201.

    Google Scholar 

  32. Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

    Article  Google Scholar 

  33. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

    Article  Google Scholar 

  34. Liao, J. M.; Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J. Phys. Chem. C 2014, 118, 17594–17599.

    Article  Google Scholar 

  35. Peng, Q.; Wang, Z. Y.; Sa, B. S.; Wu, B.; Sun, Z. M. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci. Rep. 2016, 6, 31994.

    Article  Google Scholar 

  36. Liu, F.; Ming, P. B.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.

    Article  Google Scholar 

  37. Peng, X. H.; Wei, Q.; Copple, A. Strain-engineered directindirect band gap transition and its mechanism in twodimensional phosphorene. Phys. Rev. B 2014, 90, 085402.

    Article  Google Scholar 

  38. Xie, Y.; Dall’ Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L.; Kent, P. R. C. Prediction and characterization of MXene nanosheet anodes for non-lithiumion batteries. ACS Nano 2014, 8, 9606–9615.

    Article  Google Scholar 

  39. Liu, Y. Y.; Merinov, B. V.; Goddard, W. A.. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. USA 2016, 113, 3735–3739.

    Article  Google Scholar 

  40. Brown, A.; Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst. 1965, 19, 684–685.

    Article  Google Scholar 

  41. Sa, B. S.; Sun, Z. M.; Wu, B. The development of two dimensional group IV chalcogenides, blocks for van der Waals heterostructures. Nanoscale 2016, 8, 1169–1178.

    Article  Google Scholar 

  42. Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metal-insulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

    Article  Google Scholar 

  43. Sa, B. S.; Li, Y.-L.; Qi, J. S.; Ahuja, R.; Sun, Z. M. Strain engineering for phosphorene: The potential application as a photocatalyst. J. Phys. Chem. C 2014, 118, 26560–26568.

    Article  Google Scholar 

  44. Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

    Article  Google Scholar 

  45. Sun, Z. M.; Ahuja, R.; Lowther, J. E. Mechanical properties of vanadium carbide and a ternary vanadium tungsten carbide. Solid State Commun. 2010, 150, 697–700.

    Article  Google Scholar 

  46. Sa, B. S.; Zhou, J.; Ahuja, R.; Sun, Z. M. First-principles investigations of electronic and mechanical properties for stable Ge2Sb2Te5 with van der Waals corrections. Comput. Mater. Sci. 2014, 82, 66–69.

    Article  Google Scholar 

  47. Appalakondaiah, S.; Vaitheeswaran, G.; Lebè gue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.

    Article  Google Scholar 

  48. Guo, Z. L.; Miao, N. H.; Zhou, J.; Sa, B. S.; Sun, Z. M. Strain-mediated Type-I/Type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 2017, 5, 978–984.

    Article  Google Scholar 

  49. Jiang, J. W.; Park, H. S. Negative Poisson’s ratio in singlelayer black phosphorus. Nat. Commun. 2014, 5, 4727.

    Google Scholar 

  50. Du, Y. C.; Maassen, J.; Wu, W. R.; Luo, Z.; Xu, X. F.; Ye, P. D. Auxetic black phosphorus: A 2D material with negative Poisson's ratio. Nano Lett. 2016, 16, 6701–6708.

    Article  Google Scholar 

  51. Li, J. W.; Medhekar, N. V.; Shenoy, V. B. Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides. J. Phys. Chem. C 2013, 117, 15842–15848.

    Article  Google Scholar 

  52. Guo, Z. L.; Sa, B. S.; Pathak, B.; Zhou, J.; Ahuja, R.; Sun, Z. M. Band gap engineering in huge-gap semiconductor SrZrO3 for visible-light photocatalysis. Int. J. Hydrogen Energy 2014, 39, 2042–2048.

    Article  Google Scholar 

  53. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  54. Andrew, R. C.; Mapasha, R. E.; Ukpong, A. M.; Chetty, N. Mechanical properties of graphene and boronitrene. Phys. Rev. B 2012, 85, 125428.

    Article  Google Scholar 

  55. Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  Google Scholar 

  56. Li, Q. F.; Duan, C. G.; Wan, X. G.; Kuo, J. L. Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C 2015, 119, 8662–8670.

    Article  Google Scholar 

  57. Deng, J. K.; Chang, Z. Y.; Zhao, T.; Ding, X. D.; Sun, J.; Liu, J. Z. Electric field induced reversible phase transition in Li doped phosphorene: Shape memory effect and superelasticity. J. Am. Chem. Soc. 2016, 138, 4772–4778.

    Article  Google Scholar 

  58. Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465–2468.

    Article  Google Scholar 

  59. Csonka, G. I.; Perdew, J. P.; Ruzsinszky, A.; Philipsen, P. H. T.; Lebè gue, S.; Paier, J.; Vydrov, O. A.; Ángyá n, J. G. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 2009, 79, 155107.

    Article  Google Scholar 

  60. Zhou, L. J.; Hou, Z. F.; Wu, L. M. First-principles study of lithium adsorption and diffusion on graphene with point defects. J. Phys. Chem. C 2012, 116, 21780–21787.

    Article  Google Scholar 

  61. Tritsaris, G. A.; Kaxiras, E.; Meng, S.; Wang, E. G. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett. 2013, 13, 2258–2263.

    Article  Google Scholar 

  62. Guo, G.-C.; Wang, D.; Wei, X.-L.; Zhang, Q.; Liu, H.; Lau, W.-M.; Liu, L.-M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. J. Phys. Chem. Lett. 2015, 6, 5002–5008.

    Article  Google Scholar 

  63. Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Key Research and Development Program of China (Materials Gnome Initiative), the National Natural Science Foundation of China (Nos. 61504028 and 61274005), the National Natural Science Foundation for Distinguished Young Scientists of China (No. 51225205), the Research Fund for the Doctoral Program of Higher Education of China (PhD supervisor) (No. 20133514110006), the Natural Science Foundation of Fujian Province (Nos. 2014J01176 and 2016J01216) and the Science Foundation of Department of Education of Fujian Province (No. JA15067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baisheng Sa, Bo Wu or Zhimei Sun.

Electronic supplementary material

12274_2017_1531_MOESM1_ESM.pdf

Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Hu, K., Sa, B. et al. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 10, 3136–3150 (2017). https://doi.org/10.1007/s12274-017-1531-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1531-5

Keywords

Navigation