Skip to main content
Log in

In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oil sorbents are an attractive option for oil-spill cleanup as they may be used for collection and complete removal of oil without adversely affecting the environment. However, traditional oil sorbents exhibit low oil/water separation efficiency and/or low oil-sorption capacity. In this study, an ultra-high performance graphene/polyurethane (PU) sponge has been successfully obtained by in situ polymerization in the presence of graphene dispersed in N-methylpyrrolidone (NMP). During polymerization, the NMP/graphene dispersion not only serves as a weak amine catalyst for the formation of the sponge, but promotes fixation of the graphene sheets in the framework of the PU sponge owing to the strong dipole interaction between NMP and graphene. The as-prepared graphene/PU sponge was used as an absorbing material for the continuous removal of oil from oil-spill water. The graphene/PU sponge can continuously and rapidly remove oils from immiscible oil/water mixtures in corrosive solutions, including strong acids and bases, hot water, and ice water, with an excellent separation efficiency of above 99.99%. In addition, the as-prepared graphene/PU sponge was effective in separating surfactant-stabilized emulsions with a high separation efficiency of >99.91%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dalton, T.; Jin, D. Extent and frequency of vessel oil spills in US marine protected areas. Mar. Pollut. Bull. 2010, 60, 1939–1945.

    Article  Google Scholar 

  2. Choi, S. J.; Kwon, T. H.; Im, H.; Moon, D. I.; Baek, D. J.; Seol, M. L.; Duarte, J. P.; Choi, Y. K. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Inter. 2011, 3, 4552–4556.

    Article  Google Scholar 

  3. Nguyen, S. T.; Feng, J. D.; Le, N. T.; Le, A. T. T.; Hoang, N.; Tan, V. B. C.; Duong, H. M. Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 2013, 52, 18386–18391.

    Article  Google Scholar 

  4. Zhu, Q.; Chu, Y.; Wang, Z. K.; Chen, N.; Lin, L.; Liu, F. T.; Pan, Q. M. Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 2013, 1, 5386–5393.

    Article  Google Scholar 

  5. Adebajo, M. O.; Frost, R. L.; Kloprogge, J. T.; Carmody, O.; Kokot, S. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J. Porous Mat. 2003, 10, 159–170.

    Article  Google Scholar 

  6. Sayed, S. A.; Zayed, A. M. Investigation of the effectiveness of some adsorbent materials in oil spill clean-ups. Desalination 2006, 194, 90–100.

    Article  Google Scholar 

  7. Wang, J. T.; Zheng, Y. A.; Wang, A. Q. Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 2012, 213, 1–7.

    Article  Google Scholar 

  8. Feng, L.; Zhang, Z. Y.; Mai, Z. H.; Ma, Y. M.; Liu, B. Q.; Jiang, L.; Zhu, D. B. A super-hydrophobic and superoleophilic coating mesh film for the separation of oil and water. Angew. Chem., Int. Ed. 2004, 43, 2012–2014.

    Article  Google Scholar 

  9. Xue, Z. X.; Wang, S. T.; Lin, L.; Chen, L.; Liu, M. J.; Feng, L.; Jiang, L. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv. Mater. 2011, 23, 4270–4273.

    Article  Google Scholar 

  10. Wang, L. F.; Yang, S. Y.; Wang, J.; Wang, C. F.; Chen, L. Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route. Mater. Lett. 2011, 65, 869–872.

    Article  Google Scholar 

  11. Wu, L.; Zhang, J. P.; Li, B. C.; Wang, A. Q. Mimic nature, beyond nature: Facile synthesis of durable superhydrophobic textiles using organosilanes. J. Mater. Chem. B 2013, 1, 4756–4763.

    Article  Google Scholar 

  12. Cao, Y. Z.; Zhang, X. Y.; Tao, L.; Li, K.; Xue, Z. X.; Feng, L.; Wei, Y. Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl. Mater. Inter. 2013, 5, 4438–4442.

    Article  Google Scholar 

  13. Zhang, J. P.; Seeger, S. Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 2011, 21, 4699–4704.

    Article  Google Scholar 

  14. Zhang, M.; Wang, C. Y.; Wang, S. L.; Shi, Y. L.; Li, J. Fabrication of coral-like superhydrophobic coating on filter paper for water-oil separation. Appl. Surf. Sci. 2012, 261, 764–769.

    Article  Google Scholar 

  15. Wu, L.; Zhang, J. P.; Li, B. C.; Wang, A. Q. Mechanicaland oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. J. Colloid Interf. Sci. 2014, 413, 112–117.

    Article  Google Scholar 

  16. Wei, Q. F.; Mather, R. R.; Fotheringham, A. F.; Yang, R. D. Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery. Mar. Pollut. Bull. 2003, 46, 780–783.

    Article  Google Scholar 

  17. Yang, J. S.; Cho, S. M.; Kim, B. K.; Narkis, M. Structured polyurethanes for oil uptake. J. Appl. Polym. Sci. 2005, 98, 2080–2087.

    Article  Google Scholar 

  18. Peng, M.; Li, H. B.; Wu, L. J.; Zheng, Q.; Chen, Y.; Gu, W. F. Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. J. Appl. Polym. Sci. 2005, 98, 1358–1363.

    Article  Google Scholar 

  19. Dai, C. A.; Liu, N.; Cao, Y. Z.; Chen, Y. N.; Lu, F.; Feng, L. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter 2014, 10, 8116–8121.

    Article  Google Scholar 

  20. Shi, H. C.; Shi, D. A.; Yin, L. G.; Yang, Z. H.; Luan, S. F.; Gao, J. F.; Zha, J. W.; Yin, J. H.; Li, R. K. Y. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale 2014, 6, 13748–13753.

    Article  Google Scholar 

  21. Mishra, P.; Balasubramanian, K. Nanostructured microporous polymer composite imprinted with superhydrophobic camphor soot, for emphatic oil-water separation. RSC Adv. 2014, 4, 53291–53296.

    Article  Google Scholar 

  22. Huang, S. Y.; Shi, J. F. Monolithic macroporous carbon materials as high-performance and ultralow-cost sorbents for efficiently solving organic pollution. Ind. Eng. Chem. Res. 2014, 53, 4888–4893.

    Article  Google Scholar 

  23. Kong, L. H.; Chen, X. H.; Yu, L. G.; Wu, Z. S.; Zhang, P. Y. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup. ACS Appl. Mater. Interfaces 2015, 7, 2616–2625.

    Article  Google Scholar 

  24. Gu, J. C.; Xiao, P.; Chen, J.; Liu, F.; Huang, Y. J.; Li, G. Y.; Zhang, J. W.; Chen, T. Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-inoil emulsions. J. Mater. Chem. A 2014, 2, 15268–15272.

    Article  Google Scholar 

  25. Guo, Z. G.; Liu, W. M. Superhydrophobic spiral Co3O4 nanorod arrays. Appl. Phys. Lett. 2007, 90, 193108.

    Article  Google Scholar 

  26. Wang, F. J.; Lei, S.; Xue, M. S.; Ou, J. F.; Li, C. Q.; Li, W. Superhydrophobic and superoleophilic miniature device for the collection of oils from water surfaces. J. Phys. Chem. C 2014, 118, 6344–6351.

    Article  Google Scholar 

  27. Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 2012, 51, 11371–11375.

    Article  Google Scholar 

  28. Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.

    Article  Google Scholar 

  29. Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Yong, N.; He, L. H. et al. Pumping through porous hydrophobic/oleophilic materials: An alternative technology for oil spill remediation. Angew. Chem., Int. Ed. 2014, 53, 3612–3616.

    Article  Google Scholar 

  30. Furukawa, M.; Takamatsu, K. Effects of amine catalysts on structure of polyurethane foams. Elastomers and Composites 1999, 34, 285–291.

    Google Scholar 

  31. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’ ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  Google Scholar 

  32. Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

    Article  Google Scholar 

  33. Wu, C.; Huang, X. Y.; Wu, X. F.; Qian, R.; Jiang, P. K. Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv. Mater. 2013, 25, 5658–5662.

    Article  Google Scholar 

  34. Khosravi, M.; Azizian, S. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Inter. 2015, 7, 25326–25333.

    Article  Google Scholar 

  35. Chowdhury, S. R.; Jha, A.; Manna, U.; Sarma, K. S. S. Designing a single superabsorbent for separating oil from both layered as well as micron/submicron size emulsified oil/water mixtures by gamma radiation assisted grafting. RSC Adv. 2016, 6, 26086–26095.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Nos. 51473008, 51273008, 51672019, and 21103006), Beijing Natural Science Foundation (No. 2132030), and the National Basic Research Program of China (No. 2012CB933200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianyong Lu or Ying Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Z., Wang, J., Lu, X. et al. In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills. Nano Res. 10, 1756–1766 (2017). https://doi.org/10.1007/s12274-017-1484-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1484-8

Keywords

Navigation