Skip to main content
Log in

Active-layer evolution and efficiency improvement of (CH3NH3 3Bi2I9-based solar cell on TiO2-deposited ITO substrate

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We systematically investigated the development of film morphology and crystallinity of methyl-ammonium bismuth (III) iodide (MA3Bi2I9) through onestep spin-coating on TiO2-deposited indium tin oxide (ITO)/glass. The precursor solution concentration and substrate structure have been demonstrated to be critically important in the active-layer evolution of the MA3Bi2I9-based solar cell. This work successfully improved the cell efficiency to 0.42% (average: 0.38%) with the mesoscopic architecture of ITO/compact-TiO2/mesoscopic-TiO2 (meso-TiO2)/MA3Bi2I9/2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamino)-9,9′spiro-bifluorene (spiro-MeOTAD)/MoO3/Ag under a precursor concentration of 0.45 M, which provided the probability of further improving the efficiency of the Bi3+-based lead-free organic–inorganic hybrid solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodes, G. Perovskite-based solar cells. Science 2013, 342, 317–318.

    Article  Google Scholar 

  2. Kazim, S.; Nazeeruddin, M. K.; Grätzel, M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem. 2014, 53, 2812–2824.

    Article  Google Scholar 

  3. Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

    Article  Google Scholar 

  4. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

    Article  Google Scholar 

  5. Yang, Z. S.; Yang, L. G.; Wu, G.; Wang, M.; Chen, H. Z. Heterojunction based on well-ordered organic–inorganic hybrid perovskite and its photovoltaic performance. Acta Chimica Sinica 2011, 69, 627–632.

    Google Scholar 

  6. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

    Article  Google Scholar 

  7. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

    Google Scholar 

  8. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  9. Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Gratzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

    Article  Google Scholar 

  10. Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y. S.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625.

    Article  Google Scholar 

  11. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  Google Scholar 

  12. Stranks, S. D.; Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 2015, 10, 391–402.

    Article  Google Scholar 

  13. Zuo, L. J.; Gu, Z. W.; Ye, T.; Fu, W. F.; Wu, G.; Li, H. Y.; Chen, H. Z. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 2015, 137, 2674–2679.

    Article  Google Scholar 

  14. Gu, Z. W.; Chen, F.; Zhang, X. Q.; Liu, Y. J.; Fan, C. C.; Wu, G.; Li, H. Y.; Chen, H. Z. Novel planar heterostructure perovskite solar cells with CdS nanorods array as electron transport layer. Sol. Energy Mater. Sol. Cells 2015, 140, 396–404.

    Article  Google Scholar 

  15. Gu, Z. W.; Zuo, L. J.; Larsen-Olsen, T. T.; Ye, T.; Wu, G.; Krebs, F. C.; Chen, H. Z. Interfacial engineering of selfassembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 2015, 3, 24254–24260.

    Article  Google Scholar 

  16. Wang, L.; Fu, W. F.; Gu, Z. W.; Fan, C. C.; Yang, X.; Li, H. Y.; Chen, H. Z. Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J. Mater. Chem. C 2014, 2, 9087–9090.

    Article  Google Scholar 

  17. Wu, G.; Zhang, X. Q.; Gu, Z. W.; Chen, H. Z. Progress of the research on organic–inorganic hybrid perovskites based solar cells. Mater. China 2015, 32, 136–143.

    Google Scholar 

  18. Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

    Article  Google Scholar 

  19. Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 2013, 4, 3623–3630.

    Article  Google Scholar 

  20. Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 2014, 17, 16–23.

    Article  Google Scholar 

  21. Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 2013, 4, 2423–2429.

    Article  Google Scholar 

  22. Kim, H.-S.; Im, S. H.; Park, N. G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 2014, 118, 5615–5625.

    Article  Google Scholar 

  23. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.

    Article  Google Scholar 

  24. Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

    Article  Google Scholar 

  25. Saparov, B.; Hong, F.; Sun, J. P.; Duan, H.-S.; Meng, W. W.; Cameron, S.; Hill, I. G.; Yan, Y. F.; Mitzi, D. B. Thin-film preparation and characterization of Cs3Sb2I9: A lead-free layered perovskite semiconductor. Chem. Mater. 2015, 27, 5622–5632.

    Article  Google Scholar 

  26. Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

    Article  Google Scholar 

  27. Lyu, M.; Yun, J. H.; Cai, M. L.; Jiao, Y. L.; Bernhardt, P. V.; Zhang, M.; Wang, Q.; Du, A. J.; Wang, H. X.; Liu, G. et al. Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702.

    Article  Google Scholar 

  28. Öz, S.; Hebig, J. C.; Jung, E.; Singh, T.; Lepcha, A.; Olthof, S.; Jan, F.; Gao, Y. J.; German, R.; van Loosdrecht, P. H. M. et al. Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Sol. Energy Mater. Sol. Cells, in press, DOI: 10.1016/j.solmat.2016.01.035.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Hongzheng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, G., Gu, Z. et al. Active-layer evolution and efficiency improvement of (CH3NH3 3Bi2I9-based solar cell on TiO2-deposited ITO substrate. Nano Res. 9, 2921–2930 (2016). https://doi.org/10.1007/s12274-016-1177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1177-8

Keywords

Navigation