Skip to main content
Log in

An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A process for synthesizing Fe2O3 based on electrospinning and the hard-template method was proposed such that the crystal phase of Fe2O3 could be tailored with precision. Mesoporous γ-Fe2O3, α-/γ-Fe2O3, and α-Fe2O3 nanofibers could be fabricated successfully by changing the synthesis parameters. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction analyses, Raman spectroscopy, and nitrogen adsorption–desorption analyses were used to characterize the structures of the synthesized products. The optimal calcination conditions for preparing α-/γ-Fe2O3 nanofibers with the highest ethanol response were determined through ethanol-sensing measurements. The mixed-phase material exhibited a significantly higher sensitivity than the corresponding purephase ones. The superior ethanol-sensing performance of the α-/γ-Fe2O3 nanofibers suggested that they may be suitable for use in alcohol sensing. Hence, a novel strategy for improving the sensing performance of metal oxide semiconductors is to assemble the different crystalline forms of the same metal oxide in one structure. Finally, the mechanism responsible for the sensing performance of α-/γ-Fe2O3 being higher than those of γ-Fe2O3 and α-Fe2O3 was elucidated on the basis of data from X-ray photoelectron spectroscopy and resistance measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Janata, J.; Josowicz, M.; Devaney, D. M. Chemical sensors. Anal. Chem. 1994, 66, 207R–228R.

    Article  Google Scholar 

  2. Kim, I. D.; Rothschild, A. Nanostructured metal oxide gas sensors prepared by electrospinning. Polym. Adv. Technol. 2011, 22, 318–325.

    Article  Google Scholar 

  3. Shi, L.; Naik, A. J. T.; Goodall, J. B. M.; Tighe, C.; Gruar, R.; Binions, R.; Parkin, I.; Darr, J. Highly sensitive ZnO nanorod- and nanoprism-based NO2 gas sensors: Size and shape control using a continuous hydrothermal pilot plant. Langmuir 2013, 29, 10603–10609.

    Article  Google Scholar 

  4. Yang, Y.; Ma, H. X.; Zhuang, J.; Wang, X. Morphologycontrolled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 2011, 50, 10143–10151.

    Article  Google Scholar 

  5. Song, X. L.; Xu, S. F.; Chen, L. X.; Wei, Y. Q.; Xiong, H. Recent advances in molecularly imprinted polymers in food analysis. J. Appl. Polym. Sci. 2014, 131, 40766.

    Google Scholar 

  6. Cummins, E. P.; Selfridge, A. C.; Sporn, P. H.; Sznajder, J. I.; Taylor, C. T. Carbon dioxide-sensing in organisms and its implications for human disease. Cell. Mol. Life Sci. 2014, 71, 831–845.

    Article  Google Scholar 

  7. Wang, C. X.; Cai, D. P.; Liu, B.; Li, H.; Wang, D. D.; Liu, Y.; Wang, L. L.; Wang, Y. R.; Li, Q. H.; Wang, T. H. Ethanolsensing performance of tin dioxide octahedral nanocrystals with exposed high-energy {{111}} and {{332}} facets. J. Mater. Chem. A 2014, 2, 10623–10628.

    Article  Google Scholar 

  8. Kim, D. H.; Shim, Y. S.; Moon, H. G.; Chang, H. J.; Su, D.; Kim, S. Y.; Kim, J. S.; Ju, B. K.; Yoon, S. J.; Jang, H. W. Highly ordered TiO2 nanotubes on patterned substrates: Synthesis-in-place for ultrasensitive chemiresistors. J. Phys. Chem. C 2013, 117, 17824–17831.

    Article  Google Scholar 

  9. Alenezi, M. R.; Alshammari, A. S.; Jayawardena, K. D. G. I.; Beliatis, M. J.; Henley, S. J.; Silva, S. R. P. Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 2013, 117, 17850–17858.

    Article  Google Scholar 

  10. Long, N. V.; Yang, Y.; Yuasa, M.; Thi, C. M.; Cao, Y. Q.; Nann, T.; Nogami, M. Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 2014, 4, 8250–8255.

    Article  Google Scholar 

  11. Epifani, M.; Comini, E.; Dí, R.; Andreu, T.; Genç, A.; Arbiol, J.; Siciliano, P.; Faglia, G.; Morante, J. R. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO3 quantum dots and gas-sensing enhancement by surface oxygen vacancies. ACS Appl. Mater. Interfaces 2014, 6, 16808–16816.

    Article  Google Scholar 

  12. Jin, W.; Yan, S. L.; An, L.; Chen, W.; Yang, S.; Zhao, C. X.; Dai, Y. Enhancement of ethanol gas sensing response based on ordered V2O5 nanowire microyarns. Sens. Actuators BChem. 2015, 206, 284–290.

    Article  Google Scholar 

  13. Zhou, X.; Feng, W.; Wang, C.; Hu, X. L.; Li, X. W.; Sun, P.; Shimanoe, K.; Yamazoe, N.; Lu, G. Y. Porous ZnO/ZnCo2O4 hollow spheres: Synthesis, characterization, and applications in gas sensing. J. Mater. Chem. A 2014, 2, 17683–17690.

    Article  Google Scholar 

  14. Mou, X. L.; Wei, X. J.; Li, Y.; Shen, W. J. Tuning crystalphase and shape of Fe2O3 nanoparticles for catalytic applications. CrystEngComm 2012, 14, 5107–5120.

    Article  Google Scholar 

  15. Jørgensen, J. E.; Mosegaard, L.; Thomsen, L. E.; Jensen, T. R.; Hanson, J. C. Formation of α-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study. J. Solid State Chem. 2007, 180, 180–185.

    Article  Google Scholar 

  16. Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

    Google Scholar 

  17. He, J. J.; Rao, X. H.; Yang, C.; Wang, J. D.; Su, X. T.; Niu, C. G. Glucose-assisted synthesis of mesoporous maghemite nanoparticles with enhanced gas sensing properties. Sens. Actuators B-Chem. 2014, 201, 213–221.

    Article  Google Scholar 

  18. Sun, P.; Zhu, Z.; Zhao, P. L.; Liang, X. S.; Sun, Y. F.; Liu, F. M.; Lu, G. Y. Gas sensing with hollow α-Fe2O3 urchin-like spheres prepared via template-free hydrothermal synthesis. CrystEngComm 2012, 14, 8335–8337.

    Article  Google Scholar 

  19. Wang, L. L.; Fei, T.; Lou, Z.; Zhang, T. Three-dimensional hierarchical flowerlike α-Fe2O3 nanostructures: Synthesis and ethanol-sensing properties. ACS Appl. Mater. Interfaces 2011, 3, 4689–4694.

    Article  Google Scholar 

  20. Sarkar, D.; Mandal, M.; Mandal, K. Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl. Mater. Interfaces 2013, 5, 11995–12004.

    Article  Google Scholar 

  21. Biswal, R. C. Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B-Chem. 2011, 157, 183–188.

    Article  Google Scholar 

  22. Gunawan, P.; Mei, L.; Teo, J.; Ma, J. M.; Highfield, J.; Li, Q. H.; Zhong, Z. Y. Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 2012, 28, 14090–14099.

    Article  Google Scholar 

  23. Zhang, S. F.; Ren, F.; Wu, W.; Zhou, J.; Xiao, X. H.; Sun, L. L.; Liu, Y.; Jiang, C. Z. Controllable synthesis of recyclable core-shell α-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys. Chem. Chem. Phys. 2013, 15, 8228–8236.

    Article  Google Scholar 

  24. Wang, Y. S.; Wang, S. R.; Zhang, H. X.; Gao, X. L.; Yang, J. D.; Wang, L. W. Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application. J. Mater. Chem. A 2014, 2, 7935–7943.

    Article  Google Scholar 

  25. Sen, T.; Shimpi, N. G.; Mishra, S.; Sharma, R. Polyaniline/ α-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B-Chem. 2014, 190, 120–126.

    Article  Google Scholar 

  26. Navale, S. T.; Khuspe, G. D.; Chougule, M. A.; Patil, V. B. Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 2014, 4, 27998–28004.

    Article  Google Scholar 

  27. Ming, J.; Wu, Y. Q.; Wang, L. Y.; Yu, Y. C.; Zhao, F. Y. CO2-assisted template synthesis of porous hollow bi-phase ?-/α-Fe2O3 nanoparticles with high sensor property. J. Mater. Chem. 2011, 21, 17776–17782.

    Article  Google Scholar 

  28. Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. Onedimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  Google Scholar 

  29. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Roomtemperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  30. Wan, Q.; Li, Q. H.; Chen, Y. J.; Wang, T. H.; He, X. L.; Li, J. P.; Lin, C. L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656.

    Article  Google Scholar 

  31. Arafat, M. M.; Dinan, B.; Akbar, S. A.; Haseeb, A. S. M. A. Gas sensors based on one dimensional nanostructured metaloxides: A review. Sensors 2012, 12, 7207–7258.

    Article  Google Scholar 

  32. Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J. Hazard. Mater. 2011, 186, 182–189.

    Article  Google Scholar 

  33. Zhou, Z. P.; Lai, C. L.; Zhang, L. F.; Qian, Y.; Hou, H. Q.; Reneker, D. H.; Fong, H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 2009, 50, 2999–3006.

    Article  Google Scholar 

  34. Darezereshki, E.; Bakhtiari, F.; Vakylabad, A. B.; Hassani, Z. Single-step synthesis of activated carbon/α-Fe2O3 nanocomposite at room temperature. Mater. Sci. Semicond. Process. 2013, 16, 221–225.

    Article  Google Scholar 

  35. Liu, S. L.; Zhou, J. P.; Zhang, L. N. Effects of crystalline phase and particle size on the properties of plate-like Fe2O3 nanoparticles during γ- to α-phase transformation. J. Phys. Chem. C 2011, 115, 3602–3611.

    Article  Google Scholar 

  36. El Mendili, Y.; Bardeau, J. F.; Randrianantoandro, N.; Grasset, F.; Greneche, J. M. Insights into the mechanism related to the phase transition from α-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. J. Phys. Chem. C 2012, 116, 23785–23792.

    Article  Google Scholar 

  37. de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.

    Article  Google Scholar 

  38. Soler, M. A. G.; Alcantara, G. B.; Soares, F. Q.; Viali, W. R.; Sartoratto, P. P. C.; Fernandez, J. R. L.; da Silva, S. W.; Garg, V. K.; Oliveira, A. C.; Morais, P. C. Study of molecular surface coating on the stability of maghemite nanoparticles. Surf. Sci. 2007, 601, 3921–3925.

    Article  Google Scholar 

  39. Cheng, Y. H.; Kang, Y. F.; Wang, L. W.; Wang, Y.; Wang, S. R.; Li, Y. J.; Zhong, W.; Peng, L. Q. Preparation of porous α-Fe2O3-supported Pt and its sensing performance to volatile organic compounds. J. Nat. Gas Chem. 2012, 21, 11–16.

    Article  Google Scholar 

  40. Gao, J.; Wang, L. L.; Kan, K.; Xu, S.; Jing, L. Q.; Liu, S. Q.; Shen, P. K.; Li, L.; Shi, K. Y. One-step synthesis of mesoporous Al2O3-In2O3 nanofibres with remarkable gassensing performance to NOx at room temperature. J. Mater. Chem. A 2014, 2, 949–956.

    Article  Google Scholar 

  41. Yang, G. J.; Gao, D. Q.; Zhang, J. L.; Zhang, J.; Shi, Z. H.; Xue, D. S. Evidence of vacancy-induced room temperature ferromagnetism in amorphous and crystalline Al2O3 nanoparticles. J. Phys. Chem. C 2011, 115, 16814–16818.

    Article  Google Scholar 

  42. Jin, J.; Fu, L. J.; Ouyang, J.; Yang, H. M. 3D ordered macromesoporous indium doped Al2O3. CrystEngComm 2013, 15, 6046–6053.

    Article  Google Scholar 

  43. Vuong, N. M.; Jung, H.; Kim, D.; Kim, H.; Hong, S. K. Realization of an open space ensemble for nanowires: A strategy for the maximum response in resistive sensors. J. Mater. Chem. 2012, 22, 6716–6725.

    Article  Google Scholar 

  44. Bonu, V.; Das, A.; Prasad, A. K.; Krishna, N. G.; Dhara, S.; Tyagi, A. K. Influence of in-plane and bridging oxygen vacancies of SnO2 nanostructures on CH4 sensing at low operating temperatures. Appl. Phys. Lett. 2014, 105, 243102.

    Article  Google Scholar 

  45. Carter, E.; Carley, A. F.; Murphy, D. M. Evidence for O–2 radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J. Phys. Chem. C 2007, 111, 10630–10638.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsheng Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S., Zan, G. & Wu, Q. An ultrahigh-sensitivity and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofibers. Nano Res. 8, 3673–3686 (2015). https://doi.org/10.1007/s12274-015-0867-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0867-y

Keywords

Navigation