Skip to main content
Log in

Warburg effect and its role in tumourigenesis

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Glucose is a crucial molecule in energy production and produces different end products in non-tumourigenic- and tumourigenic tissue metabolism. Tumourigenic cells oxidise glucose by fermentation and generate lactate and adenosine triphosphate even in the presence of oxygen (Warburg effect). The Na+/H+-antiporter is upregulated in tumourigenic cells resulting in release of lactate- and H+ ions into the extracellular space. Accumulation of lactate- and proton ions in the extracellular space results in an acidic environment that promotes invasion and metastasis. Otto Warburg reported that tumourigenic cells have defective mitochondria that produce less energy. However, decades later it became evident that these mitochondria have adapted with alterations in mitochondrial content, structure, function and activity. Mitochondrial biogenesis and mitophagy regulate the formation of new mitochondria and degradation of defective mitochondria in order to combat accumulation of mutagenic mitochondrial deoxyribonucleic acid. Tumourigenic cells also produce increase reactive oxygen species (ROS) resulting from upregulated glycolysis leading to pathogenesis including cancer. Moderate ROS levels exert proliferative- and prosurvival signaling, while high ROS quantities induce cell death. Understanding the crosstalk between aberrant metabolism, redox regulation, mitochondrial adaptions and pH regulation provides scientific- and medical communities with new opportunities to explore cancer therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Diagram created by M.T. Lebelo in Microsoft Publisher 2013

Fig. 2

Diagram created by M.T. Lebelo in Microsoft Publisher 2013

Fig. 3

Similar content being viewed by others

References

  • Amith SR, Fliegel L (2017) Na+/H+ exchanger-mediated hydrogen ion extrusion as a carcinogenic signal in triple-negative breast cancer etiopathogenesis and prospects for its inhibition in therapeutics. Semin Cancer Biol 46:35–41

    Article  CAS  Google Scholar 

  • Aquino-Gálvez A, González-Ávila G, Delgado-Tello J, Castillejos-López M, Mendoza-Milla C, Zúñiga J, Checa M, Maldonado-Martínez HA, Trinidad-López A, Cisneros J, Torres-Espíndola LM, Hernández-Jiménez C, Sommer B, Cabello-Gutiérrez C, Gutiérrez-González LH (2016) Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep 35:577–583

    Article  PubMed  CAS  Google Scholar 

  • Barteczek P, Li L, Ernst A-S, Böhler L-I, Marti HH, Kunze R (2016) Neuronal HIF-1α and HIF-2α deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke. J Cereb Blood Flow Metab 37:291–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellance N, Benard G, Furt F, Begueret H, Smolkova K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R (2009) Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int J Biochem Cell Biol 41:2566–2577

    Article  CAS  PubMed  Google Scholar 

  • Bhandari V, Hoey C, Liu LY, Lalonde E, Ray J, Livingstone J, Lesurf R, Shiah YJ, Vujcic T, Huang X, Espiritu SMG, Heisler LE, Yousif F, Huang V, Yamaguchi TN, Yao CQ, Sabelnykova VY, Fraser M, Chua MLK, van der Kwast T, Liu SK, Boutros PC, Bristow RG (2019) Molecular landmarks of tumor hypoxia across cancer types. Nat Genet 541:308–318

    Article  CAS  Google Scholar 

  • Böhme I, Bosserhoff AK (2016) Acidic tumor microenvironment in human melanoma. Pigment Cell Melanoma Res 29:508–523

    Article  PubMed  CAS  Google Scholar 

  • Boland ML, Chourasia AH, Macleod KF (2013) Mitochondrial dysfunction in cancer. Front Oncol. https://doi.org/10.3389/fonc.2013.00292

    Article  PubMed  PubMed Central  Google Scholar 

  • Cazzaniga M, Bonanni B (2015) Relationship between metabolic reprogramming and mitochondrial activity in cancer cells. Understanding the anticancer effect of metformin and its clinical implications. Anticancer Res 35:5789–5796

    CAS  PubMed  Google Scholar 

  • Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp 61:43–58

    Article  CAS  Google Scholar 

  • Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 69:358–368

    Article  CAS  PubMed  Google Scholar 

  • Chourasia AH, Boland ML, Macleod KF (2015) Mitophagy and cancer. Cancer Metab. https://doi.org/10.1186/s40170-015-0130-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie CF, Fang D, Hunt EG, Morris ME, Rovini A, Heslop KA, Beeson GC, Beeson CC, Maldonado EN (2019) Statin-dependent modulation of mitochondrial metabolism in cancer cells is independent of cholesterol content. FASEB J 33:8186–8201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O’Brien JP, Pierce KA, Gui DY, Sullivan LB, Wasylenko TM, Subbaraj L, Chin CR, Stephanopolous G, Mott BT, Jacks T, Clish CB, Vander Heiden MG (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 23:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Luca A, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, Sanchez-Alvarez R, Martinez-Outschoorn UE, Cappello AR, Pezzi V, Lisanti MP, Sotgia F (2015) Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget 6:14777–14795

    PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Derouet MF, Dakpo E, Wu L, Zehong G, Conner J, Keshavjee S, de Perrot M, Waddell T, Elimova E, Yeung J, Darling GE (2018) miR-145 expression enhances integrin expression in SK-GT-4 cell line by down-regulating c-Myc expression. Oncotarget 9:15198–15207

    Article  PubMed  PubMed Central  Google Scholar 

  • Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, Yung WK, Weinstein JN, Tan M, Yao J (2014) Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 5:8202–8210

    Article  PubMed  Google Scholar 

  • Drake LE, Springer MZ, Poole LP, Kim CJ, Macleod KF (2017) Expanding perspectives on the significance of mitophagy in cancer. Semin Cancer Biol 47:110–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Kenawi A, Gatenbee C, Robertson-Tessi M, Bravo R, Dhillon J, Balagurunathan Y, Berglund A, Visvakarma N, Ibrahim-Hashim Choi J, Luddy K, Gatenby R, Pilon-Thomas S, Anderson A, Ruffel B, Gillies R (2018) Acidity promotes tumor progression by altering macrophage phenotype in prostate cancer. BioRxiv. https://doi.org/10.1101/478420

    Article  Google Scholar 

  • Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024

    CAS  PubMed  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  PubMed  Google Scholar 

  • Garrett SM, Whitaker RM, Beeson CC, Schnellmann RG (2014) Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury. J Pharmacol Exp Ther 350:257–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garrido-Maraver J, Paz MV, Cordero MD, Bautista-Lorite J, Oropesa-Avila M, de la Mata M, Pavón AD, de Lavera I, Alcocer-Gómez E, Galán F, Ybot González P, Cotán D, Jackson S, Sánchez-Alcázar JA (2015) Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochim Biophys Acta 1852:2535–2553

    Article  CAS  PubMed  Google Scholar 

  • Gentric G, Kieffer Y, Mieulet V, Goundiam O, Bonneau C, Nemati F, Hurbain I, Raposo G, Popova T, Stern MH, Lallemand-Breitenbach V, Müller S, Cañeque T, Rodriguez R, Vincent-Salomon A, de Thé H, Rossignol R, Mechta-Grigoriou F (2019) PML-regulated mitochondrial metabolism enhances chemosensitivity in human ovarian cancers. Cell Metab 29:156–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasauer A, Chandel NS (2014) Targeting antioxidants for cancer therapy. Biochem Pharmacol 92:90–101

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mendendez P, Hevia D, Alonso-Arias R, Alvarez-Artime A, Rodriquez-Garcia A, Gonzalez-Pola I (2018) GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol 17:112–127

    Article  CAS  Google Scholar 

  • Gu CJ, Xie F, Zhang B, Yang H-L, Cheng J, He YY, Zhu XY, Li DJ, Li MQ (2018) High glucose promotes epithelial–mesenchymal transition of uterus endometrial cancer cells by increasing ER/GLUT4-mediated VEGF secretion. Cell Physiol Biochem 50:706–720

    Article  CAS  PubMed  Google Scholar 

  • Guaragnella N, Giannattasio S, Moro L (2014) Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 92:62–72

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Nan Y, Zhen Y, Zhang Y, Guo L, Yu Huang Q, Zhong Y (2016) miRNA-451 inhibits glioma cell proliferation and invasion by downregulating glucose transporter 1. Tumor Biol 37:13751–13761

    Article  CAS  Google Scholar 

  • Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB (2012) Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 16:1295–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwak H, Haegeman G, Tsang BK, Song YS (2015) Cancer-specific interruption of glucose metabolism by resveratrol is mediated through inhibition of Akt/GLUT1 axis in ovarian cancer cells. Mol Carcinog 54:1529–1540

    Article  CAS  PubMed  Google Scholar 

  • Halcrow PW, Khan N, Datta G, Ohm JE, Ohm JE, Chen X, Geiger JD (2019) Importance of measuring endolysosome, cytosolic, and extracellular pH in understanding the pathogenesis of and possible treatments for glioblastoma multiforme. Cancer Rep. https://doi.org/10.1002/cnr2.1193

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardy K, Brand-Miller J, Brown KD, Thomas MG, Copeland L (2015) The importance of dietary carbohydrate in human evolution. Q Rev Biol 90:251–268

    Article  PubMed  Google Scholar 

  • Hatami S, White CW, Shan S, Haromy A, Qi X, Ondrus M, Kinnear A, Himmat S, Michelakis E, Nagendran J, Freed DH (2019) Myocardial functional decline during prolonged ex situ heart perfusion. Ann Thorac Surg. https://doi.org/10.1016/j.athoracsur.2019.01.076

    Article  PubMed  Google Scholar 

  • Hernández-Reséndiz I, Gallardo-Pérez JC, López-Macay A, Robledo-Cadena DX, García-Villa E, Gariglio P, Saavedra E, Moreno-Sánchez R, Rodríguez-Enríquez S (2019) Mutant p53R248Q downregulates oxidative phosphorylation and upregulates glycolysis under normoxia and hypoxia in human cervix cancer cells. J Cell Physiol 234:5524–5536

    Article  PubMed  CAS  Google Scholar 

  • Hillis AL, Lau AN, Devoe CX, Dayton TL, Danai LV, Di Vizio D, Vander Heiden MG (2018) PKM2 is not required for pancreatic ductal adenocarcinoma. Cancer Metab. https://doi.org/10.1186/s40170-018-0188-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirpara J, Eu JQ, Tan JKM, Wong AL, Clement MV, Kong LR, Ohi N, Tsunoda T, Qu J, Goh BC, Pervaiz S (2019) Metabolic reprogramming of oncogene-addicted cancer cells to OXPHOS as a mechanism of drug resistance. Redox Biol. https://doi.org/10.1016/j.redox.2018.101076

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu C-C, Lee H-C, Wei Y-H (2013) Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma. World J Gastroenterol 19:8880–8886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Tang Y, Peng X, Cai X, Wa Q, Ren D, Li Q, Luo J, Li L, Zou X, Huang S (2016) Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol Rep 36:2025–2032

    Article  CAS  PubMed  Google Scholar 

  • Jeon S-M, Hay N (2015) The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res 38:346–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon S-M, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Wang D, Ren H, Shi Y, Gao Y (2019) miR-145-targeted HBXIP modulates human breast cancer cell proliferation. Thoracic Cancer 10:71–77

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Cai Q, Shenoy AK, Lim S, Zhang Y, Charles S, Tarrash M, Fu X, Kamarajugadda S, Trevino JG, Tan M, Lu J (2016) Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation. Oncotarget 7:25113

    PubMed  PubMed Central  Google Scholar 

  • Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochem Biophys Acta 1807:552–561

    CAS  PubMed  Google Scholar 

  • Kang Y-H, Yi M-J, Kim M-J, Park M-T, Bae S, Kang C-M, Cho CK, Park IC, Park MJ, Rhee CH, Hong SI, Chung HY, Lee YS, Lee SJ (2004) Caspase-independent cell death by arsenic trioxide in human cervical cancer cells. Cancer Res 64:8960–8967

    Article  CAS  PubMed  Google Scholar 

  • Kasiappan R, Safe SH (2016) ROS-inducing agents for cancer chemotherapy. React Oxyg Species 1:22–37

    Google Scholar 

  • Kasim V, Xie Y-D, Wang H-M, Huang C, Yan X-S, Nian W-Q, Zheng XD, Miyagishi M, Wu SR (2017) Transcription factor Yin Yang 2 is a novel regulator of the p53/p21 axis. Oncotarget 8:54694–54707

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Lee YS, Kang SW, Kim S, Kim TY, Lee SH, Hwang SW, Kim J, Kim EN, Ju JS, Park YY, Kweon MN (2019) Loss of PKM2 in Lgr5+ intestinal stem cells promotes colitis-associated colorectal cancer. Sci Rep 9:6212. https://doi.org/10.1038/s41598-019-42707-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryeziu K, Pirker C, Englinger B, van Schoonhoven S, Spitzwieser M, Mohr T, Körner W, Weinmüllner R, Tav K, Grillari J, Cichna-Markl M, Berger W, Heffeter P (2016) Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells. Oncotarget 7:27379–27393

    Article  PubMed  PubMed Central  Google Scholar 

  • LeBleu VS, O’Connell JT, Herrera KNG, Wikman-Kocher H, Pantel K, Haigis MC (2014) PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation to promote metastasis. Nat Cell Biol 16:992–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Choi YS, Park JH, Kim H, Lee I, Won YB, Yun BH, Park JH, Seo SK, Lee BS, Cho S (2019) MiR-150-5p may contribute to pathogenesis of human leiomyoma via regulation of the Akt/p27Kip1 pathway in vitro. Int J Mol Sci. https://doi.org/10.3390/ijms20112684

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu H, Wu M, Feng Y, Wu S, Shen X, He J, Luo X (2019) Hypoxia-related miR-210-5p and miR-210-3p regulate hypoxia-induced migration and epithelial–mesenchymal transition in hepatoma cells. Int J Clin Exp Med 12:5096–5104

    Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Qi L, Knifley T, Piecoro DW, Rychahou P, Liu J, Mitov MI, Martin J, Wang C, Wu J, Weiss HL, Butterfield DA, Evers BM, O’Connor KL, Chen M (2019a) S100A4 alters metabolism and promotes invasion of lung cancer cells by up-regulating mitochondrial complex I protein NDUFS2. J Biol Chem 294:7516–7527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Zhang Z, Wang H, Chen X, Jin C (2019b) Activation of AMPK by metformin promotes renal cancer cell proliferation under glucose deprivation through its interaction with PKM2. Int J Biol Sci 15:617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J (2019c) miR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms’ tumor. BMC Cancer. https://doi.org/10.1186/s12885-019-5609-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Li G, Liu L, Feng L, Wang X, Jin H (2013) Regulation and function of mitophagy in development and cancer. Autophagy 9:1720–1736

    Article  CAS  PubMed  Google Scholar 

  • Lu C-L, Qin L, Liu H-C, Candas D, Fan M, Li JJ (2015a) Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition—a Warburg-reversing effect. PLoS ONE 10:e0121046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Tan M, Cai Q (2015b) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356:156–164

    Article  CAS  PubMed  Google Scholar 

  • Lunetti P, Di Giacomo M, Vergara D, De Domenico S, Maffia M, Zara V, Capobianco L, Ferramosca A (2019) Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FASEB J 286:688–709

    CAS  Google Scholar 

  • Morita M, Sato T, Nomura M, Sakamoto Y, Inoue Y, Tanaka R, Ito S, Kurosawa K, Yamaguchi K, Sugiura Y, Takizaki H, Yamashita Y, Katakura R, Sato I, Kawai M, Okada Y, Watanabe H, Kondoh G, Matsumoto S, Kishimoto A, Obata M, Matsumoto M, Fukuhara T, Motohashi H, Suematsu M, Komatsu M, Nakayama KI, Watanabe T, Soga T, Shima H, Maemondo M, Tanuma N (2018) PKM1 confers metabolic advantages and promotes cell-autonomous tumor cell growth. Cancer Cell 33:355–367

    Article  CAS  PubMed  Google Scholar 

  • Nie ZY, Liu XJ, Zhan Y, Liu MH, Zhang XY, Li ZY, Lu YQ, Luo JM, Yang L (2019) miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. Biosci Rep. https://doi.org/10.1042/BSR20190150

    Article  PubMed  PubMed Central  Google Scholar 

  • Palikaras K, Tavernarakis N (2014) Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 56:182–188

    Article  CAS  PubMed  Google Scholar 

  • Palikaras K, Lionaki E, Tavernarakis N (2016) Mitophagy: in sickness and in health. Mol Cell Oncol. https://doi.org/10.1080/23723556.2015.1056332

    Article  PubMed  Google Scholar 

  • Pelicano H, Martin D, Xu R, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Peppicelli S, Andreucci E, Ruzzolini J, Laurenzana A, Margheri F, Fibbi G, Del Rosso M, Bianchini F, Calorini L (2017) The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci 74:2761–2771

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Khudaynazar N, Tantravahi RV, Gillum AM, Hoffman BS (2016) ON 01910.Na (rigosertib) inhibits PI3K/Akt pathway and activates oxidative stress signals in head and neck cancer cell lines. Oncotarget 7:79388–79400

    PubMed  PubMed Central  Google Scholar 

  • Rademaker G, Costanza B, Anania S, Agirman F, Maloujahmoum N, Di Valentin E, Goval JJ, Bellahcène A, Castronovo V, Peulen O (2019) Myoferlin contributes to the metastatic phenotype of pancreatic cancer cells by enhancing their migratory capacity through the control of oxidative phosphorylation. Cancers. https://doi.org/10.3390/cancers11060853

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Voelker H-U, Kapp M, Krockenberger M, Dietl J, Kammerer U (2010) Glycolytic phenotype in breast cancer: activation of Akt, up-regulation of GLUT1, TKTL1 and down-regulation of M2PK. J Cancer Res Clin Oncol 136:219–225

    Article  CAS  PubMed  Google Scholar 

  • Scott TL, Rangaswamy S, Wicker CA, Izumi T (2014) Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 20:708–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng B, Wang X, Su B, Hg Lee, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429

    Article  CAS  PubMed  Google Scholar 

  • Siebeneicher H, Bauser M, Buchmann B, Heisler I, Mueller T, Neuhaus R, Rehwinkel H, Telser J, Zorn L (2016) Identification of novel GLUT inhibitors. Bioorg Med Chem Lett 26:1732–1737

    Article  CAS  PubMed  Google Scholar 

  • Stubbs M, McSheehy PM, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19

    Article  CAS  PubMed  Google Scholar 

  • Sudhagar S, Sathya S, Gokulapriya G, Lakshmi B (2016) AKT-p53 axis protect cancer cells from autophagic cell death during nutrition deprivation. Biochem Biophys Res Commun 471:396–401

    Article  CAS  PubMed  Google Scholar 

  • Sui G, Affar EB, Shi Y, Brignone C, Wall NR, Yin P, Donohoe M, Luke MP, Calvo D, Grossman SR, Shi Y (2004) Yin Yang 1 is a negative regulator of p53. Cell 117:859–872

    Article  CAS  PubMed  Google Scholar 

  • Sullivan LB, Chandel NS (2014) Mitochondrial reactive oxygen species and cancer. Cancer Metab. https://doi.org/10.1186/2049-3002-2-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Szablewski L (2013) Expression of glucose transporters in cancers. Cancer 1835:164–169

    CAS  Google Scholar 

  • Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, Wang J, Li B, Yin W, Wang D (2016) Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumor Biol 37:1889

    Article  CAS  Google Scholar 

  • Tataranni T, Fi Agriest, Pacelli C, Ruggieri V, Laurenzana I, Mazzoccoli C, Sala GD, Panebianco C, Pazienza C, Capitanio V, Piccoli C (2019) Dichloroacetate affects mitochondrial function and stemness-associated properties in pancreatic cancer cell lines. Cell. https://doi.org/10.3390/cells8050478

    Article  Google Scholar 

  • Thiessen SE, Vanhorebeek I, Derese I, Gunst J, Van den Berghe G (2015) FGF21 response to critical illness: effect of blood glucose control and relation with cellular stress and survival. J Clin Endocrinol Metab 100:E1319–E1327

    Article  CAS  PubMed  Google Scholar 

  • Viale A, Corti D, Draetta GF (2015) Tumors and mitochondrial respiration: a neglected connection. Cancer Res 75:3687–3691

    Article  CAS  Google Scholar 

  • Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Moraes CT (2011) Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu S, Huang C, Li Y, Zhao H, Kasim V (2018) Yin Yang 1 promotes the Warburg effect and tumorigenesis via glucose transporter GLUT3. Cancer Sci 109:2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shu Y, Gu C, Fan Y (2019) The novel sugar transport, SLC50A1 as a potential serum-based diagnostic and prognostic biomarker for breast cancer. Cancer Manag Res 11:865–976

    Article  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker RM, Wills LP, Stallons LJ, Schnellmann RG (2013) cGMP-selective phosphodiesterase inhibitors stimulate mitochondrial biogenesis and promote recovery from acute kidney injury. J Pharmacol Exp Ther 347:626–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitworth AJ, Pallanck LJ (2017) PINK1/Parkin mitophagy and neurodegeneration—what do we really know in vivo? Curr Opin Genet Dev 44:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wieman HL, Wofford JA, Rathmell JC (2007) Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 18:1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtkowiak JW, Rothberg JM, Kumar V, Schramm KJ, Haller E, Proemsey JB, Lloyd MC, Sloane BF, Gillies RJ (2012) Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Res 72:3938–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong J, Choi SYC, Liu R, Xu E, Killam J, Gout PW, Wang Y (2019) Potential therapies for infectious diseases based on targeting immune evasion mechanisms that pathogens have in common with cancer cells. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Kasim V, Kano MR, Tanaka S, Ohba S, Miura Y, Liu X, Matsuhashi A, Chung UI, Yang L, Kataoka K, Nishiyama N, Miyagishi M (2013) Transcription factor YY1 contributes to tumor growth by stabilizing hypoxia factor HIF-1α in a p53-independent manner. Cancer Res 73(6):1787–1799

    Article  CAS  PubMed  Google Scholar 

  • Xiong H, Chen S, Lai L, Yang H, Xu Y, Pang J, Su Z, Lin H, Zheng Y (2019) Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis. Neurobiol Aging 79:30–42

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Fukumura D, Jain RK (2002) Acidic extracellular ph induces vascular endothelial growth factor (vegf) in human glioblastoma cells via erk1/2 mapk signaling pathway mechanism of low pH-induced VEGF. J Biol Chem 277:11368–11374

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhu X, Zhang C, Huang W, Zhou Y, Yan D (2018) Oxygen and Pt(II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat Commun. https://doi.org/10.1038/s41467-018-04318-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao H, Yang J, Ma Y, Liu Z, Li Z, Li C, Wang T, Yan Z, Du N (2019a) miR-150-5p regulates melanoma proliferation, invasion and metastasis via SIX1-mediated Warburg effect. Biochem Biophys Res Commun 515(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Li H, Wang W, Zhang J, Jia S, Wang J, Wei J, Lei D, Hu K, Yang X (2019b) CCL2/CCR99 axis promotes the progression of salivary adenoid cystic carcinoma via recruiting and reprogramming the tumor-associated macrophages. Front Oncol. https://doi.org/10.3389/fonc.2019.00231

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao C, Wang W, Wang P, Zhao M, Li X, Zhang F (2018) Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer activity. Adv Mater. https://doi.org/10.1002/adma.201704833

    Article  PubMed  Google Scholar 

  • Yao A, Xiang Y, Si YR, Fan LJ, Li JP, Li H, Guo W, He HX, Liang XJ, Tan Y, Bao LY, Liao XH (2019a) PKM2 promotes glucose metabolism through a let-7a-5p/Stat3/hnRNP-A1 regulatory feedback loop in breast cancer cells. J Cell Biochem 120:6542–6554

    Article  CAS  PubMed  Google Scholar 

  • Yao C-H, Wang R, Wang Y, Kung CP, Weber JD, Patti GJ (2019b) Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation. Elife. https://doi.org/10.7554/eLife.41351

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye G, Qin Y, Wang S, Pan D, Xu S, Wu C, Wang X, Wang J, Ye H, Shen H (2019) Lamc1 promotes the Warburg effect in hepatocellular carcinoma cells by regulating PKM2 expression through AKT pathway. Cancer Biol Ther 20:711–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama M, Tanuma N, Shibuya R, Shiroki T, Abue M, Yamamoto K, Miura K, Yamaguchi K, Sato I, Tamai K, Satoh K (2018) Pyruvate kinase type M2 contributes to the development of pancreatic ductal adenocarcinoma by regulating the production of metabolites and reactive oxygen species. J Oncol 52:881–891

    CAS  Google Scholar 

  • Zhang S, Pei M, Li Z, Li H, Liu Y, Li J (2018) Double-negative feedback interaction between DNA methyltransferase 3A and miRNA-145 in the Warburg effect of ovarian cancer cells. Cancer Sci 109:2734–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Zhang L, Wu Y, Dai Q, Zhou Y, Li Z, Yang L, Guo Q, Lu N (2018) Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol Res 135:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Li L, Yang J, Niu Q, Wang H, Qin X, Zhu N, Shi A (2019) Overexpression of pyruvate kinase M2 in tumor tissues is associated with poor prognosis in patients with hepatocellular carcinoma. Pathol Oncol Res. https://doi.org/10.1007/s12253-019-00630-3

    Article  PubMed  Google Scholar 

  • Zhu J, Wang KZ, Chu CT (2013) After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 9:1663–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong W-X, Rabinowitz JD, White E (2016) Mitochondria and cancer. Mol Cell 61:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funds were provided by Prof. AM Joubert who acquired grants from the National Research Foundation (Grant Nos. N00591, N00375, N00903, N01716), the Cancer Association of South Africa (Grant Nos. AOV741, AOW228), the Struwig Germeshuysen Trust, the School of Medicine Research Committee of the University of Pretoria and Medical Research Council of South Africa. Additional funding was provided by Dr. MH Visagie whom received grants from the National Research Foundation, the School of Medicine Research Committee of the University of Pretoria and Struwig Germeshysen Trust. A special acknowledgement to Dr. TV Mqoco who assisted with subsidies obtained from Thutukha National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle H. Visagie.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebelo, M.T., Joubert, A.M. & Visagie, M.H. Warburg effect and its role in tumourigenesis. Arch. Pharm. Res. 42, 833–847 (2019). https://doi.org/10.1007/s12272-019-01185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01185-2

Keywords

Navigation