Skip to main content
Log in

Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

To investigate the effect of the variant CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites, 4-hydroxyatomoxetine (4-HAT) and N-desmethylatomoxetine (NAT), in healthy subjects, a single oral dose of atomoxetine was administered to 62 subjects with a CYP2D6*wt/*wt (*wt = *1 or *2, n = 22), CYP2D6*wt/*10 (n = 22) or CYP2D6*10/*10 (n = 18) genotype. Plasma samples were then collected for 24 h after atomoxetine administration. The concentrations of atomoxetine and its metabolites were assayed using LC–MS/MS. For atomoxetine, the Cmax, AUC0–∞, t1/2 and CL/F showed genotype-dependent differences. The CYP2D6*10/*10 and CYP2D6*wt/*10 groups showed 1.74- and 1.15-fold higher Cmax, 3.40- and 1.33-fold higher AUC0–∞, and 69.7 and 24.6 % lower CL/F, compared to those of the CYP2D6*wt/*wt group, respectively. The Cmax and t1/2 for 4-HAT were lower and longer in the CYP2D6*10/*10 group than those in the CYP2D6*wt/*wt group, but the AUC0–∞ was not different between these groups. The Cmax, AUC0–∞ and t1/2 for NAT were profoundly greater in the CYP2D6*10/*10 group than they were in the CYP2D6*wt/*wt group. The concentration of active moieties of atomoxetine (atomoxetine + 4-HAT) in the CYP2D6*10/*10 group was 3.32-fold higher than that in the CYP2D6*wt/*wt group. The mean exposure to active moieties of atomoxetine was markedly higher in subjects with the CYP2D6*10/*10 genotype compared to that in those with the CYP2D6*wt/*wt genotype. The higher systemic exposure of the active atomoxetine moieties in CYP2D6*10/*10 individuals may increase the risk of concentration-related adverse events of atomoxetine, although this has not yet been clinically confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barker, M.J., J.G. Benitez, S. Ternullo, and G.A. Juhl. 2004. Acute oxcarbazepine and atomoxetine overdose with quetiapine. Veterinary and Human Toxicology 46: 130–132.

    PubMed  Google Scholar 

  • Choi, C.I., J.W. Bae, H.I. Lee, C.G. Jang, U.D. Sohn, and S.Y. Lee. 2012a. Determination of atomoxetine metabolites in human plasma by liquid chromatography/tandem mass spectrometry and its application to a pharmacokinetic study. Journal of Chromatography B 885: 103–108.

    Article  Google Scholar 

  • Choi, C.I., C.G. Jang, J.W. Bae, and S.Y. Lee. 2012b. Validation of an analytical LC-MS/MS method in human plasma for the pharmacokinetic study of atomoxetine. Journal of Analytical Chemistry 68: 986–991.

    Article  Google Scholar 

  • Corman, S.L., B.A. Fedutes, and C.M. Culley. 2004. Atomoxetine: the first nonstimulant for the management of attention-deficit/hyperactivity disorder. American Journal of Health System Pharmacy 61: 2391–2399.

    CAS  PubMed  Google Scholar 

  • Cui, Y.M., C.H. Teng, A.X. Pan, E. Yuen, K.P. Yeo, Y. Zhou, X. Zhao, A.J. Long, M.E. Bangs, and S.D. Wise. 2007. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele. British Journal of Clinical Pharmacology 64: 445–449.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dupont, W.D., and W.D. Plumer. 1998. Power and sample size calculations for studies involving linear regression. Cotrol Clinical Trials 19: 589–601.

    Article  CAS  Google Scholar 

  • Gehlert, D.R., S.L. Gackenheimer, and D.W. Robertson. 1993. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for norepinephrine reuptake sites. Neuroscience Letters 157: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg, M., S.C. Sim, A. Gomez, and C. Rodriguez-Antona. 2007. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacology & Therapeutics 116: 496–526.

    Article  CAS  Google Scholar 

  • Ingelman-Sundberg, M. 2005. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics Journal 5: 6–13.

    Article  CAS  PubMed  Google Scholar 

  • Ji, L., S. Pan, J. Marti-Jaun, E. Hänseler, K. Rentsch, and M. Hersberger. 2002. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clinical Chemistry 48: 983–988.

    CAS  PubMed  Google Scholar 

  • Jin, S.K., H.J. Chung, M.W. Chung, J.I. Kim, J.H. Kang, S.W. Woo, S. Bang, S.H. Lee, H.J. Lee, and J. Roh. 2008. Influence of CYP2D6*10 on the pharmacokinetics of metoprolol in healthy Korean volunteers. Journal of Clinical Pharmacy and Therapeutics 33: 567–573.

    Article  CAS  PubMed  Google Scholar 

  • Johansson, I., E. Lundqvist, M.L. Dahl, and M. Ingelman-Sundberg. 1996. PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics 6: 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Kasi, P.M., R. Mounzer, and G.H. Gleeson. 2011. Cardiovascular side effects of atomoxetine and its interactions with inhibitors of the cytochrome p450 system. Case Report in Medicine 2011: 952584.

    Google Scholar 

  • Lee, S.J., S.S. Lee, H.J. Jung, H.S. Kim, S.J. Park, C.W. Yeo, and J.G. Shin. 2009. Discovery of novel functional variants and extensive evaluation of CYP2D6 genetic polymorphisms in Koreans. Drug Metabolism and Disposition 37: 1464–1470.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., R. Wang, Y. Guo, S. Wen, L. Xu, and S. Wang. 2010. Relationship of CYP2D6 genetic polymorphisms and the pharmacokinetics of tramadol in Chinese volunteers. Journal of Clinical Pharmacy and Therapeutics 35: 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist, E., I. Johansson, and M. Ingelman-Sundberg. 1999. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226: 327–338.

    Article  CAS  PubMed  Google Scholar 

  • Marez, D., M. Legrand, N. Sabbagh, J.M. Lo Guidice, C. Spire, J.J. Lafitte, U.A. Meyer, and F. Broly. 1997. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 7: 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, A., J. Azuma, J.W. Witcher, A.J. Long, J.M. Sauer, B.P. Smith, K.A. DeSante, H.A. Read, M. Takahashi, and M. Nakano. 2012. Pharmacokinetics, Safety, and Tolerability of Atomoxetine and Effect of CYP2D6*10/*10 Genotype in Healthy Japanese Men. Journal of Clinical Pharmacology 52: 388–403.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza, R., Y.J. Wan, R.E. Poland, M. Smith, Y. Zheng, N. Berman, and K.M. Lin. 2001. CYP2D6 polymorphism in a Mexican American population. Clinical Pharmacology and Therapeutics 70: 552–560.

    Article  CAS  PubMed  Google Scholar 

  • Michelson, D., H.A. Read, D.D. Ruff, J. Witcher, S. Zhang, and J. McCracken. 2007. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry 46: 242–251.

    Article  PubMed  Google Scholar 

  • Nishida, Y., T. Fukuda, I. Yamamoto, and J. Azuma. 2000. CYP2D6 genotypes in a Japanese population: low frequencies of CYP2D6 gene duplication but high frequency of CYP2D6*10. Pharmacogenetics 10: 567–570.

    Article  CAS  PubMed  Google Scholar 

  • Paulzen, M., H.W. Clement, and G. Gründer. 2008. Enhancement of atomoxetine serum levels by co-administration of paroxetine. International Journal of Neuropsychopharmacology 11: 289–291.

    Article  CAS  PubMed  Google Scholar 

  • Ring, B.J., J.S. Gillespie, J.A. Eckstein, and S.A. Wrighton. 2002. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metabolism and Disposition 30: 319–323.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, J.M., G.D. Ponsler, E.L. Mattiuz, A.J. Long, J.W. Witcher, H.R. Thomasson, and K.A. Desante. 2003. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metabolism and Disposition 31: 98–107.

    Article  CAS  PubMed  Google Scholar 

  • Sauer, J.M., B.J. Ring, and J.W. Witcher. 2005. Clinical pharmacokinetics of atomoxetine. Clinical Pharmacokinetics 44: 571–590.

    Article  CAS  PubMed  Google Scholar 

  • Sawant, S., and S.R. Daviss. 2004. Seizures and prolonged QTc with atomoxetine overdose. American Journal of Psychiatry 161: 757.

    Article  PubMed  Google Scholar 

  • Scherer, D., D. Hassel, R. Bloehs, E. Zitron, K. von Löwenstern, C. Seyler, D. Thomas, F. Konrad, H.F. Bürgers, G. Seemann, W. Rottbauer, H.A. Katus, C.A. Karle, and E.P. Scholz. 2009. Selective noradrenaline reuptake inhibitor atomoxetine directly blocks hERG currents. British Journal of Pharmacology 156: 226–236.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simpson, D., and G.L. Plosker. 2004. Atomoxetine: A review of its use in adults with attention deficit hyperactivity disorder. Drugs 64: 205–222.

    Article  CAS  PubMed  Google Scholar 

  • Steimer, W., K. Zöpf, S. von Amelunxen, H. Pfeiffer, J. Bachofer, J. Popp, B. Messner, W. Kissling, and S. Leucht. 2004. Allele-specific change of concentration and functional gene dose for the prediction of steady-state serum concentrations of amitriptyline and nortriptyline in CYP2C19 and CYP2D6 extensive and intermediate metabolizers. Clinical Chemistry 50: 1623–1633.

    Article  CAS  PubMed  Google Scholar 

  • ter Laak, M.A., A.H. Temmink, A. Koeken, N.E. van’t Veer, P.R. van Hattum, and C.M. Cobbaert. 2010. Recognition of impaired atomoxetine metabolism because of low CYP2D6 activity. Pediatric Neurology 43: 159–162.

    Article  PubMed  Google Scholar 

  • Wang, S.L., J.D. Huang, M.D. Lai, B.H. Liu, and M.L. Lai. 1993. Molecular basis of genetic variation in debrisoquin hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clinical Pharmacology and Therapeutics 53: 410–418.

    Article  CAS  PubMed  Google Scholar 

  • Wernicke, J.F., D. Faries, D. Girod, J. Brown, H. Gao, D. Kelsey, H. Quintana, R. Lipetz, D. Michelson, and J. Heiligenstein. 2003. Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Safety 26: 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Q., X.M. Yu, H.B. Lin, L. Wang, Q.Z. Yun, S.N. Hu, and D.M. Wang. 2009. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics Journal 9: 380–394.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Yong Lee.

Ethics declarations

Conflicts of interest

We would like to declare that there were no conflicts of interest in conducting this research.

Additional information

Ji-Yeong Byeon, Young-Hoon Kim, Han-Sung Na and Jong-Hwa Jang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byeon, JY., Kim, YH., Na, HS. et al. Effects of the CYP2D6*10 allele on the pharmacokinetics of atomoxetine and its metabolites. Arch. Pharm. Res. 38, 2083–2091 (2015). https://doi.org/10.1007/s12272-015-0646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0646-z

Keywords

Navigation