Skip to main content
Log in

Anticancer activity of undecapeptide analogues derived from antimicrobial peptide, Brevinin-1EMa

  • Research Article
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In spite of great advances in cancer therapy, cancer remains the major cause of death throughout the world. The increasing resistance of cancer cells towards current anticancer drugs requires development of anticancer agents with a new mode of action. Some antimicrobial peptides have become therapeutic candidates as new anticancer agents. As part of an effort to develop new antimicrobial and/or anticancer agents from natural peptides with low molecular weights, we have investigated the shortest bioactive analogues, which were derived from a 24-residue antimicrobial peptide, Brevinin-1EMa. Recently, we found four bioactive undecapeptides derived from a cationic, amphipathic α-helical, 11-residue peptide (named herein GA-W2: FLGWLFKWASK-NH2) (Won et al., 2011). In order to identify the potential of these peptides as anticancer agents, we investigated the anticancer activity of four undecapeptides against seven tumor cell lines such as A498 (kidney), A549 (lung), HCT116 (colon), MKN45 (stomach), PC-3 (prostate), SK-MEL-2 (skin) and SK-OV-3 (ovary). GA-K4 (FLKWLFKWAKK-NH2), which had the most potent antimicrobial activity of the four undecapeptides, also exhibited the most potent anticancer activity and synergistic effect in combination with doxorubicin. Therefore, GA-K4 peptide may be a potentially useful candidate as an anticancer peptide agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amblard, M., Fehrentz, J. A., Martinez, J., and Subra, G., Methods and protocols of modern solid phase Peptide synthesis. Mol. Biotechnol., 33, 239–254 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Andreu, D. and Rivas, L., Animal antimicrobial peptides: An overview. Biopolymers, 47, 415–433 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Barra, D. and Simmaco, M., Amphibian skin: A promising resource for antimicrobial peptides. Trends Biotechnol., 13, 205–209 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bechinger, B., Structure and functions of channel-forming peptides: Magainins, cecropins, melittin and alamethicin. J. Membr. Biol., 156, 197–211 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Boman, H. G., Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol., 13, 61–92 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Chou, T. C. and Talalay, P., Quantitiative-analysis of doseeffect relationships — The combined effect of multipledrugs of enzyme-inhibitors. Adv. Enzyme Regul., 22, 27–55 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Chou, T. C., Motzer, R. J., Tong, Y. Z., and Bosl, G. J., Computerized quatitation of synergism and antagonism of taxol, topotecan, and ciplatin against human teratocarcinoma cell-growth — A rational approach to clinical protocl design. J. Natl. Cancer Inst., 86, 1517–1524 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Chou, T. C., Drug combinations: From laboratory to practice. J. Lab. Clin. Med., 132, 6–8 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Chou, T. C., Preclinical versus clinical drug combination studies. Leuk. Lymphoma, 49, 2059–2080 (2008).

    Article  PubMed  Google Scholar 

  • Conlon, J. M., Reflections on a systematic nomenclature for antimicrobial peptides from the skins of frogs of the family Ranidae. Peptides, 29, 1815–1819 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Cruciani, R. A., Barker, J. L., Zasloff, M., Chen, H. C., and Colamonici, O., Antibiotic magainins exert cytolytic activity against transformed-cell lines trough channel formation. Proc. Natl. Acad. Sci. U. S. A., 88, 3792–3796 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Dasmahapatra, G. P., Didolkar, P., Alley, M. C., Ghosh, S., Sausville, E. A., and Roy, K. K., In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clin. Cancer Res., 10, 5242–5252 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Dennison, S. R., Wallace, J., Harris, F., and Phoenix, D. A., Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett., 12, 31–39 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Drewinko, B., Loo, T. L., and Freireich, E. J., Combination chemotherapy in vitro. III. BCNU. Cancer Treat. Rep., 63, 373–375 (1979).

    PubMed  CAS  Google Scholar 

  • Gabay, J. E., Ubiquitous natural antibiotics. Science, 264, 373–374 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Goraya, J., Knoop, F. C., and Conlon, J. M., Ranatuerin 1T: an antimicrobial peptide isolated from the skin of the frog, Rana temporaria. Peptides, 20, 159–163 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hancock, R. E. W. and Scott, M. G., The role of antimicrobial peptides in animal defenses. Proc. Natl. Acad. Sci. U. S. A., 97, 8856–8861 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hoskin, D. W. and Ramamoorthy, A., Studies on anticancer activities of antimicrobial peptides. Biochim. Biophys. Acta, 1778, 357–375 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Hui, L., Leung, K., and Chen, H. M., The combined effects of antibacterial peptide cecropin A and anti-cancer agents on leukemia cells. Anticancer Res., 22, 2811–2816 (2002).

    PubMed  CAS  Google Scholar 

  • Kim, S., Kim, S. S., Bang, Y. J., Kim, S. J., and Lee, B. J., In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides, 24, 945–953 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lopez, J. A., Nassif, E., Vannicola, P., Krikorian, J. G., and Agarwal, R. P., Central nervous-system pharmacokinetics of high-dose cytosine-arabinoside. J. Neurooncol., 3, 119–124 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Martello, L. A., Mcdaid, H. M., Regl, D. L., Yang, C. P., Meng, D., Pettus, T. R., Kaufman, M. D., Arimoto, H., Danishefsky, S. J., Smith, A. B., 3rd, and Horwitz, S. B., Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin. Cancer Res., 6, 1978–1987 (2000).

    PubMed  CAS  Google Scholar 

  • Meyer, H., The ninhydrin reaction and its analytical applications. Biochem. J., 67, 333–340 (1957).

    PubMed  CAS  Google Scholar 

  • Mor, A. and Nicolas, P., The NH2-terminal alpha-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J. Biol. Chem., 269, 1934–1939 (1994).

    PubMed  CAS  Google Scholar 

  • Nicolas, P. and Mor, A., Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu. Rev. Microbiol., 49, 277–304 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ohsaki, Y., Gazdar, A. F., Chen, H. C., and Johnson, B. E., Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res., 52, 3534–3538 (1992).

    PubMed  CAS  Google Scholar 

  • Papo, N. and Shai, Y., Host defense peptides as new weapons in cancer treatment. Cell. Mol. Life Sci., 62, 784–790 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Park, J. M., Jung, J. E., and Lee, B. J., Antimicrobial peptides from the skin of a Korean frog, Rana-Rugosa. Biochem. Biophys. Res. Commun., 205, 948–954 (1994).

    Article  CAS  Google Scholar 

  • Rinaldi, A. C., Antimicrobial peptides from amphibian skin: an expanding scenario — Commentary. Curr. Opin. Chem. Biol., 6, 799–804 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Rozek, T., Wegener, K. L., Bowie, J. H., Olver, I. N., Carver, J. A., Wallace, J. C., and Tyler, M. J., The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis — The solution structure of aurein 1.2. Eur. J. Biochem., 267, 5330–5341 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Simmaco, M., Mignogna, G., and Barra, D., Antimicrobial peptides from amphibian skin: what do they tell us. Biopolymers, 47, 435–450 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wellings, D. A. and Atherton, E., Standard Fmoc protocols. Methods Enzymol., 289, 44–67 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Won, H. S., Park, S. H., Kim, H. E., Hyun, B., Kim, M., and Lee, B. J., Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur. J. Biochem., 269, 4367–4374 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Won, H. S., Jung, S. J., Kim, H. E., Seo, M. D., and Lee, B. J., Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem., 279, 14784–14791 (2004a).

    Article  PubMed  CAS  Google Scholar 

  • Won, H. S., Kim, S. S., Jung, S. J., Son, W. S., Lee, B., and Lee, B. J., Structure activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells, 17, 469–476 (2004b).

    PubMed  CAS  Google Scholar 

  • Won, H. S., Seo, M. D., Jung, S. J., Lee, S. J., Kang, S. J., Son, W. S., Kim, H. J., Park, T. K., Park, S. J., and Lee, B. J., Structural determinants for the membrane interaction of novel bioactive undecapeptides derived from gaegurin 5. J. Med. Chem., 49, 4886–4895 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Won, H. S., Kang, S. J., Choi, W. S., and Lee, B. J., Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide. Mol. Cells, 31, 49–54 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Yeaman, M. R. and Yount, N. Y., Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 55, 27–55 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yount, N. Y. and Yeaman, M. R., Immunocontinuum: Perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept. Lett., 12, 49–67 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Jin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SJ., Ji, HY. & Lee, BJ. Anticancer activity of undecapeptide analogues derived from antimicrobial peptide, Brevinin-1EMa. Arch. Pharm. Res. 35, 791–799 (2012). https://doi.org/10.1007/s12272-012-0505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0505-0

Key words

Navigation