Skip to main content

Advertisement

Log in

FAM3A Deficiency − Induced Mitochondrial Dysfunction Underlies Post-Infarct Mortality and Heart Failure

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Mitochondrial protein sequence similarity 3 gene family member A (FAM3A) plays important roles in the electron transfer chain, while its functions in the heart are still unknown. This study aims to explore the roles and mechanisms of FAM3A after myocardial infarction (MI). FAM3A-deficient (Fam3a−/−) mice were implemented with MI injury and showed lower survival rates at 4 weeks as well as decreased cardiac systolic function. Isolated cardiomyocytes of Fam3a−/− mice showed reduced basal, ATP-linked respiration and respiratory reserve compared to that of wild-type mice. Transmission electron microscopy studies showed Fam3a−/− mice had a larger size and elevated density of mitochondria. FAM3A deficiency also induced elevated mitochondrial Ca2+, higher opening level of mPTP, lower mitochondrial membrane potential and elevated apoptotic rates. Further analyses demonstrated that mitochondrial dynamics protein Opa1 contributed to the effects of FAM3A in cardiomyocytes. Our study discloses the important roles of mitochondrial protein FAM3A in the heart.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, Benetos A, Biffi A, Boavida JM, Capodanno D, Cosyns B, Crawford C, Davos CH, Desormais I, Di Angelantonio E, Franco OH, Halvorsen S, Hobbs FDR, Hollander M, Jankowska EA, Michal M, Sacco S, Sattar N, Tokgozoglu L, Tonstad S, Tsioufis KP, van Dis I, van Gelder IC, Wanner C, Williams B. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2021;2021. https://doi.org/10.1093/eurjpc/zwab154

  2. Yue R, Xia X, Jiang J, Yang D, Han Y, Chen X, Cai Y, Li L, Wang WE, Zeng C. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene. J Cell Physiol. 2015;230(9):2128–41. https://doi.org/10.1002/jcp.24941.

    Article  CAS  PubMed  Google Scholar 

  3. Sun N, Finkel T. Cardiac mitochondria: a surprise about size. J Mol Cell Cardiol. 2015;82:213–5. https://doi.org/10.1016/j.yjmcc.2015.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Virmani R, Forman MB, Kolodgie FD. Myocardial reperfusion injury. Histopathological effects of perfluorochemical. Circulation. 1990;81(3 Suppl):Iv57-68

  5. Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713–30. https://doi.org/10.1038/s41580-018-0052-8.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu H, Toan S, Mui D, Zhou H. Mitochondrial quality surveillance as a therapeutic target in myocardial infarction. Acta Physiol (Oxf). 2021;231(3):e13590. https://doi.org/10.1111/apha.13590.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev. 2021;6:101250. https://doi.org/10.1016/j.arr.2020.101250.

    Article  CAS  Google Scholar 

  8. Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57:102884. https://doi.org/10.1016/j.ebiom.2020.102884.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Anzell AR, Maizy R, Przyklenk K, Sanderson TH. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol. 2018;55(3):2547–64. https://doi.org/10.1007/s12035-017-0503-9.

    Article  CAS  PubMed  Google Scholar 

  10. Wang C, Chi Y, Li J, Miao Y, Li S, Su W, Jia S, Chen Z, Du S, Zhang X, Zhou Y, Wu W, Zhu M, Wang Z, Yang H, Xu G, Wang S, Yang J, Guan Y. FAM3A activates PI3K p110α/Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology. 2014;59(5):1779–90. https://doi.org/10.1002/hep.26945.

    Article  CAS  PubMed  Google Scholar 

  11. Yang W, Wang J, Chen Z, Chen J, Meng Y, Chen L, Chang Y, Geng B, Sun L, Dou L, Li J, Guan Y, Cui Q, Yang J. NFE2 induces miR-423-5p to promote gluconeogenesis and hyperglycemia by repressing the hepatic FAM3A-ATP-Akt pathway. Diabetes. 2017;66(7):1819–32. https://doi.org/10.2337/db16-1172.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: a promising therapeutical target for NAFLD and type 2 diabetes. Metabolism. 2018;81:71–82. https://doi.org/10.1016/j.metabol.2017.12.001.

    Article  CAS  PubMed  Google Scholar 

  13. Song Q, Gou WL, Zhang R. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int. 2016;94:82–9. https://doi.org/10.1016/j.neuint.2016.02.010.

    Article  CAS  PubMed  Google Scholar 

  14. Chen Z, Wang J, Yang W, Chen J, Meng Y, Geng B, Cui Q, Yang J. FAM3A mediates PPARgamma's protection in liver ischemia-reperfusion injury by activating Akt survival pathway and repressing inflammation and oxidative stress. Oncotarget. 2017;8(30):49882-96. https://doi.org/10.18632/oncotarget.17805

  15. Chen Z, Liu X, Luo Y, Wang J, Meng Y, Sun L, Chang Y, Cui Q, Yang J. Repurposing doxepin to ameliorate steatosis and hyperglycemia by activating FAM3A signaling pathway. Diabetes. 2020;69(6):1126–39. https://doi.org/10.2337/db19-1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Zhang J, Lin X, Wang Y, Wu X, Yang F, Gao W, Zhang Y, Sun J, Jiang C, Xu M. DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J Mol Cell Cardiol. 2021;151:3–14. https://doi.org/10.1016/j.yjmcc.2020.10.014.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Physiol. 2000;279(1):H429–36. https://doi.org/10.1152/ajpheart.2000.279.1.H429.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao YT, Guo YB, Gu L, Fan XX, Yang HQ, Chen Z, Zhou P, Yuan Q, Ji GJ, Wang SQ. Sensitized signalling between L-type Ca2+ channels and ryanodine receptors in the absence or inhibition of FKBP12.6 in cardiomyocytes. Cardiovasc Res. 2017;113(3):332–42. https://doi.org/10.1093/cvr/cvw247

  19. Frezza C, Cipolat S, Scorrano L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc. 2007;2(2):287–95. https://doi.org/10.1038/nprot.2006.478.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu M, Gao J, Lin XJ, Gong YY, Qi YC, Ma YL, Song YX, Tan W, Li FY, Ye M, Gong J, Cui QH, Huang ZH, Zhang YY, Wang XJ, Lan F, Wang SQ, Yuan G, Feng Y, Xu M. Novel roles of an intragenic G-quadruplex in controlling microRNA expression and cardiac function. Nucleic Acids Res. 2021;49(5):2522–36. https://doi.org/10.1093/nar/gkab055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee H, Yoon Y. Mitochondrial membrane dynamics-functional positioning of OPA1. Antioxidants (Basel). 2018;7(12). https://doi.org/10.3390/antiox7120186

  22. Zhu Y, Xu G, Patel A, McLaughlin MM, Silverman C, Knecht K, Sweitzer S, Li X, McDonnell P, Mirabile R, Zimmerman D, Boyce R, Tierney LA, Hu E, Livi GP, Wolf B, Abdel-Meguid SS, Rose GD, Aurora R, Hensley P, Briggs M, Young PR. Cloning, expression, and initial characterization of a novel cytokine-like gene family. Genomics. 2002;80(2):144–50. https://doi.org/10.1006/geno.2002.6816.

    Article  CAS  PubMed  Google Scholar 

  23. Xiang R, Chen J, Li S, Yan H, Meng Y, Cai J, Cui Q, Yang Y, Xu M, Geng B, Yang J. VSMC-Specific deletion of FAM3A attenuated Ang II-promoted hypertension and cardiovascular hypertrophy. Circ Res. 2020;126(12):1746–59. https://doi.org/10.1161/CIRCRESAHA.119.315558.

    Article  CAS  PubMed  Google Scholar 

  24. Xu W, Liang M, Zhang Y, Huang K, Wang C. Endothelial FAM3A positively regulates post-ischaemic angiogenesis. EBioMedicine. 2019;43:32–42. https://doi.org/10.1016/j.ebiom.2019.03.038.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773–89. https://doi.org/10.1038/s41569-020-0403-y.

    Article  PubMed  Google Scholar 

  26. Heusch G. Myocardial stunning and hibernation revisited. Nat Rev Cardiol. 2021;18(7):522–36. https://doi.org/10.1038/s41569-021-00506-7.

    Article  PubMed  Google Scholar 

  27. Verma DD, Hartner WC, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes effectively protect the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res. 2005;22(12):2115–20. https://doi.org/10.1007/s11095-005-8354-x.

    Article  CAS  PubMed  Google Scholar 

  28. Hartner WC, Verma DD, Levchenko TS, Bernstein EA, Torchilin VP. ATP-loaded liposomes for treatment of myocardial ischemia. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(5):530–9. https://doi.org/10.1002/wnan.46.

    Article  CAS  PubMed  Google Scholar 

  29. Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New insights into the role of mitochondria quality control in ischemic heart disease. Front Cardiovasc Med. 2021;8:774619. https://doi.org/10.3389/fcvm.2021.774619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schipper DA, Palsma R, Marsh KM, O’Hare C, Dicken DS, Lick S, Kazui T, Johnson K, Smolenski RT, Duncker DJ, Khalpey Z. Chronic myocardial ischemia leads to loss of maximal oxygen consumption and complex I dysfunction. Ann Thorac Surg. 2017;104(4):1298–304. https://doi.org/10.1016/j.athoracsur.2017.03.004.

    Article  PubMed  Google Scholar 

  31. Stride N, Larsen S, Hey-Mogensen M, Hansen CN, Prats C, Steinbrüchel D, Køber L, Dela F. Impaired mitochondrial function in chronically ischemic human heart. Am J Physiol Heart Circ Physiol. 2013;304(11):H1407–14. https://doi.org/10.1152/ajpheart.00991.2012.

    Article  CAS  PubMed  Google Scholar 

  32. Dorn GW 2nd, Kitsis RN. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res. 2015;116(1):167–82. https://doi.org/10.1161/CIRCRESAHA.116.303554.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson SM. FAM3A - A mitochondrial route to the stimulation of angiogenesis? EBioMedicine. 2019;43:3–4. https://doi.org/10.1016/j.ebiom.2019.04.033.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pernas L, Scorrano L. Mito-Morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31. https://doi.org/10.1146/annurev-physiol-021115-105011.

    Article  CAS  PubMed  Google Scholar 

  35. Piquereau J, Caffin F, Novotova M, Prola A, Garnier A, Mateo P, Fortin D, le Huynh H, Nicolas V, Alavi MV, Brenner C, Ventura-Clapier R, Veksler V, Joubert F. Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res. 2012;94(3):408–17. https://doi.org/10.1093/cvr/cvs117.

    Article  CAS  PubMed  Google Scholar 

  36. Head B, Griparic L, Amiri M, Gandre-Babbe S, van der Bliek AM. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol. 2009;187(7):959–66. https://doi.org/10.1083/jcb.200906083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou JC, Westermann B, Rugarli EI, Langer T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol. 2009;187(7):1023–36. https://doi.org/10.1083/jcb.200906084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McBride H, Soubannier V. Mitochondrial function: OMA1 and OPA1, the grandmasters of mitochondrial health. Curr Biol. 2010;20(6):R274–6. https://doi.org/10.1016/j.cub.2010.02.011.

    Article  CAS  PubMed  Google Scholar 

  39. Wang M, Wang RY, Zhou JH, Xie XH, Sun GB, Sun XB. Calenduloside E Ameliorates myocardial ischemia-reperfusion injury through regulation of AMPK and mitochondrial OPA1. Oxid Med Cell Longev. 2020;2020:2415269. https://doi.org/10.1155/2020/2415269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160–71. https://doi.org/10.1016/j.cell.2013.08.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varanita T, Soriano ME, Romanello V, Zaglia T, Quintana-Cabrera R, Semenzato M, Menabò R, Costa V, Civiletto G, Pesce P, Viscomi C, Zeviani M, Di Lisa F, Mongillo M, Sandri M, Scorrano L. The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab. 2015;21(6):834–44. https://doi.org/10.1016/j.cmet.2015.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004;287(4):C817–33. https://doi.org/10.1152/ajpcell.00139.2004.

    Article  CAS  PubMed  Google Scholar 

  43. Kuznetsov AV, Javadov S, Margreiter R, Grimm M, Hagenbuchner J, Ausserlechner MJ. The role of mitochondria in the mechanisms of cardiac ischemia-reperfusion injury. Antioxidants (Basel). 2019;8(10). https://doi.org/10.3390/antiox8100454

Download references

Acknowledgements

We thank professor Xin Pan (State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, Beijing, China) for constructive criticism in the project design.

Funding

This work was supported by: Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences (2021RU003), National Natural Science Foundation of China (Grant No. 82270343, No. 81900315, No. U20A20345) and National Key Research and Development Program of China (No.2020YFA0803800, No. 2020YFA0803803).

Author information

Authors and Affiliations

Authors

Contributions

TX, JXW, and XXL performed the experiments and analyzed the data. TX, JXW, and XXL wrote the manuscript. RX, HHL and SQW provided experimental advice and some experimental supplies. JCY and MX designed the experiments. All authors contributed to the editing of the review and approved the final version of the manuscript for submission.

Corresponding authors

Correspondence to Jichun Yang or Ming Xu.

Ethics declarations

Conflict of Interest

None declared.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12265_2023_10382_MOESM1_ESM.pptx

Supplementary file1 (PPTX 65865 KB) Figure S1. (A) Serum level of cardiac troponin T 6 hours post-MI (n=6). (B) Lung edema measured by wet-dry weight of sham and 28-day post-MI (n=6). (C) Heart to tibia weight ratio at 28-day post-MI (n=6). Figure S2. (A-D) representative pictures and (E) statistics analysis of protein level of Mfn1, Mfn2, DRP1, and Fis1 from cardiac infarct border tissues at 7-day post-MI or sham heart tissue. ns, non-significant. All values are presented as mean ± SEM. Data were analyzed by two-way ANOVA, followed by subsequent post hoc multiple comparison.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Wang, J., Liu, X. et al. FAM3A Deficiency − Induced Mitochondrial Dysfunction Underlies Post-Infarct Mortality and Heart Failure. J. of Cardiovasc. Trans. Res. 17, 104–120 (2024). https://doi.org/10.1007/s12265-023-10382-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10382-w

Keywords

Navigation