Skip to main content

Advertisement

Log in

Danlou Tablet Protects Against Cardiac Remodeling and Dysfunction after Myocardial Ischemia/Reperfusion Injury through Activating AKT/FoxO3a Pathway

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Myocardial ischemia/reperfusion injury (I/RI) and ventricular remodeling are the critical pathological basis of heart failure. Danlou tablet (Dan) is a kind of Chinese patent medicine used in angina pectoris treatment in China. However, it remains unclear whether and how Dan could protect against cardiac remodeling after myocardial I/RI. In this study, both preventive and therapeutic administration of Dan attenuated ventricular remodeling and cardiac dysfunction at 3 weeks after myocardial I/RI. Dan inhibited Bax/Bcl2 ratio and Caspase3 cleavage in heart tissues and also inhibited apoptosis of human AC16 cells and neonatal rat cardiomyocytes stressed by oxygen and glucose deprivation/reperfusion. Mechanistically, Dan inhibited myocardial apoptosis through phosphorylating AKT and FoxO3a, thereby inhibiting downstream BIM and PUMA expressions. Collectively, these results demonstrate that Dan treatment is effective to protect against cardiac remodeling and dysfunction after myocardial I/RI and provide theoretical basis for its cardioprotection and clinical application in treating ischemic cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this article and its supplementary information files.

References

  1. Starz C, Hardtner C, Mauler M, Dufner B, Hoppe N, Krebs K, et al. Elevated platelet-leukocyte complexes are associated with, but dispensable for myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2022;117(1):61. https://doi.org/10.1007/s00395-022-00970-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li X, Liu M, Sun R, Zeng Y, Chen S, Zhang P. Protective approaches against myocardial ischemia reperfusion injury. Exp Ther Med. 2016;12(6):3823–9. https://doi.org/10.3892/etm.2016.3877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Florea VG, Mareyev VY, Samko AN, Orlova IA, Coats AJ, Belenkov YN. Left ventricular remodelling: common process in patients with different primary myocardial disorders. Int J Cardiol. 1999;68(3):281–7. https://doi.org/10.1016/s0167-5273(98)00362-3.

    Article  CAS  PubMed  Google Scholar 

  4. Yao H, Xie Q, He Q, Zeng L, Long J, Gong Y, et al. Pretreatment with Panaxatriol Saponin Attenuates Mitochondrial Apoptosis and Oxidative Stress to Facilitate Treatment of Myocardial Ischemia-Reperfusion Injury via the Regulation of Keap1/Nrf2 Activity. Oxid Med Cell Longev. 2022;2022:9626703. https://doi.org/10.1155/2022/9626703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castaldo P, Macri ML, Lariccia V, Matteucci A, Maiolino M, Gratteri S, et al. Na(+)/Ca(2+) exchanger 1 inhibition abolishes ischemic tolerance induced by ischemic preconditioning in different cardiac models. Eur J Pharmacol. 2017;794:246–56. https://doi.org/10.1016/j.ejphar.2016.11.045.

    Article  CAS  PubMed  Google Scholar 

  6. Gross GJ. Role of opioids in acute and delayed preconditioning. J Mol Cell Cardiol. 2003;35(7):709–18. https://doi.org/10.1016/s0022-2828(03)00135-4.

    Article  CAS  PubMed  Google Scholar 

  7. Bil-Lula I, Lin HB, Bialy D, Wawrzynska M, Diebel L, Sawicka J, et al. Subthreshold nitric oxide synthase inhibition improves synergistic effects of subthreshold MMP-2/MLCK-mediated cardiomyocyte protection from hypoxic injury. J Cell Mol Med. 2016;20(6):1086–94. https://doi.org/10.1111/jcmm.12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang SH, Wang J, Li J. Efficacy assessment of treating patients with coronary heart disease angina of phlegm and stasis mutual obstruction syndrome by Danlou tablet. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012;32(8):1051–5.

    PubMed  Google Scholar 

  9. Wang L, Mao S, Qi JY, Ren Y, Guo XF, Chen KJ, et al. Effect of Danlou Tablet () on peri-procedural myocardial injury among patients undergoing percutaneous coronary intervention for non-ST elevation acute coronary syndrome: A study protocol of a multicenter, randomized, controlled trial. Chin J Integr Med. 2015;21(9):662–6. https://doi.org/10.1007/s11655-015-2284-1.

    Article  PubMed  Google Scholar 

  10. Tang JJ, Li GX, Liu ZG, Yi R, Yu D, Zhang YB, et al. Danlou Tablet Improves Chronic Intermittent Hypoxia-Induced Dyslipidemia and Arteriosclerosis by HIF-1alpha-Angptl4 mRNA Signaling Pathway. Chin J Integr Med. 2022;28(6):509–17. https://doi.org/10.1007/s11655-020-3255-8.

    Article  CAS  PubMed  Google Scholar 

  11. Guo LL, Wang J, Lin F, He YX. Effect of danlou tablet on arrhythmia model rats induced by transient myocardial ischemia/ reperfusion. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2014;34(9):1125–9.

    PubMed  Google Scholar 

  12. Wei M, Guo M, Meng X, Li L, Wang H, Zhang M, et al. PPARgamma Mediates the Cardioprotective Roles of Danlou Tablet After Acute Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc Med. 2022;9:858909. https://doi.org/10.3389/fcvm.2022.858909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi JY, Wang L, Gu DS, Guo LH, Zhu W, Zhang MZ. Protective Effects of Danlou Tablet () against Murine Myocardial Ischemia and Reperfusion Injury In Vivo. Chin J Integr Med. 2018;24(8):613–20. https://doi.org/10.1007/s11655-016-2448-7.

    Article  PubMed  Google Scholar 

  14. Bei Y, Lu D, Bar C, Chatterjee S, Costa A, Riedel I, et al. miR-486 attenuates cardiac ischemia/reperfusion injury and mediates the beneficial effect of exercise for myocardial protection. Mol Ther. 2022;30(4):1675–91. https://doi.org/10.1016/j.ymthe.2022.01.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95. https://doi.org/10.1016/j.cmet.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bei Y, Pan LL, Zhou Q, Zhao C, Xie Y, Wu C, et al. Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Med. 2019;17(1):42. https://doi.org/10.1186/s12916-019-1268-y.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zou Z, Liu B, Zeng L, Yang X, Huang R, Wu C, et al. Cx43 Inhibition Attenuates Sepsis-Induced Intestinal Injury via Downregulating ROS Transfer and the Activation of the JNK1/Sirt1/FoxO3a Signaling Pathway. Mediators Inflamm. 2019;2019:7854389. https://doi.org/10.1155/2019/7854389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miao J, Zhou XB, Mao W, Chen J, Xu XM. Effects of Xuefu Zhuyu Granule and Danlou Tablet on Anti-atherosclerosis Rats and Potential Mechanisms. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2016;36(1):80–4.

    PubMed  Google Scholar 

  19. Rong Y, Wu Q, Tang J, Liu Z, Lv Q, Ye X, et al. Danlou Tablet May Alleviate Vascular Injury Caused by Chronic Intermittent Hypoxia through Regulating FIH-1, HIF-1, and Angptl4. Evid Based Complement Alternat Med. 2022;2022:4463108. https://doi.org/10.1155/2022/4463108.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li L, Qu Y, Mao M, Xiong Y, Mu D. The involvement of phosphoinositid 3-kinase/Akt pathway in the activation of hypoxia-inducible factor-1alpha in the developing rat brain after hypoxia-ischemia. Brain Res. 2008;1197:152–8. https://doi.org/10.1016/j.brainres.2007.12.059.

    Article  CAS  PubMed  Google Scholar 

  21. Ghigo A, Li M. Phosphoinositide 3-kinase: friend and foe in cardiovascular disease. Front Pharmacol. 2015;6:169. https://doi.org/10.3389/fphar.2015.00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ciuffreda L, Falcone I, Incani UC, Del Curatolo A, Conciatori F, Matteoni S, et al. PTEN expression and function in adult cancer stem cells and prospects for therapeutic targeting. Adv Biol Regul. 2014;56:66–80. https://doi.org/10.1016/j.jbior.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  23. Li D, Qu Y, Mao M, Zhang X, Li J, Ferriero D, et al. Involvement of the PTEN-AKT-FOXO3a pathway in neuronal apoptosis in developing rat brain after hypoxia-ischemia. J Cereb Blood Flow Metab. 2009;29(12):1903–13. https://doi.org/10.1038/jcbfm.2009.102.

    Article  CAS  PubMed  Google Scholar 

  24. Ceci M, Gallo P, Santonastasi M, Grimaldi S, Latronico MV, Pitisci A, et al. Cardiac-specific overexpression of E40K active Akt prevents pressure overload-induced heart failure in mice by increasing angiogenesis and reducing apoptosis. Cell Death Differ. 2007;14(5):1060–2. https://doi.org/10.1038/sj.cdd.4402095.

    Article  CAS  PubMed  Google Scholar 

  25. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 2000;101(6):660–7. https://doi.org/10.1161/01.cir.101.6.660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279(6):4782–93. https://doi.org/10.1074/jbc.M310405200.

    Article  CAS  PubMed  Google Scholar 

  27. Kim J, Wende AR, Sena S, Theobald HA, Soto J, Sloan C, et al. Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol. 2008;22(11):2531–43. https://doi.org/10.1210/me.2008-0265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Ao X, Jia Y, Li X, Wang Y, Wang J. The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl). 2022;100(7):997–1015. https://doi.org/10.1007/s00109-022-02219-x.

    Article  CAS  PubMed  Google Scholar 

  29. Chen YF, Pandey S, Day CH, Chen YF, Jiang AZ, Ho TJ, et al. Synergistic effect of HIF-1alpha and FoxO3a trigger cardiomyocyte apoptosis under hyperglycemic ischemia condition. J Cell Physiol. 2018;233(4):3660–71. https://doi.org/10.1002/jcp.26235.

    Article  CAS  PubMed  Google Scholar 

  30. McGowan SE, McCoy DM. Platelet-derived growth factor-A regulates lung fibroblast S-phase entry through p27(kip1) and FoxO3a. Respir Res. 2013;14(1):68. https://doi.org/10.1186/1465-9921-14-68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fluteau A, Ince PG, Minett T, Matthews FE, Brayne C, Garwood CJ, et al. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain. Neurosci Lett. 2015;609:11–7. https://doi.org/10.1016/j.neulet.2015.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McClelland Descalzo DL, Satoorian TS, Walker LM, Sparks NR, Pulyanina PY, ZurNieden NI. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/beta-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7(1):55–68. https://doi.org/10.1016/j.stemcr.2016.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Orea-Soufi A, Paik J, Braganca J, Donlon TA, Willcox BJ, Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol Sci. 2022;43(12):1070–84. https://doi.org/10.1016/j.tips.2022.09.010.

    Article  CAS  PubMed  Google Scholar 

  34. Marchelek-Mysliwiec M, Nalewajska M, Turon-Skrzypinska A, Kotrych K, Dziedziejko V, Sulikowski T, et al. The Role of Forkhead Box O in Pathogenesis and Therapy of Diabetes Mellitus. Int J Mol Sci. 2022; 23(19). https://doi.org/10.3390/ijms231911611.

  35. Shukla S, Shukla M, Maclennan GT, Fu P, Gupta S. Deregulation of FOXO3A during prostate cancer progression. Int J Oncol. 2009;34(6):1613–20. https://doi.org/10.3892/ijo_00000291.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang MQ, Zheng YL, Chen H, Tu JF, Shen Y, Guo JP, et al. Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway. Acta Pharmacol Sin. 2013;34(11):1386–96. https://doi.org/10.1038/aps.2013.91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue M, Joo YA, Li S, Niu C, Chen G, Yi X, et al. Metallothionein Protects the Heart Against Myocardial Infarction via the mTORC2/FoxO3a/Bim Pathway. Antioxid Redox Signal. 2019;31(5):403–19. https://doi.org/10.1089/ars.2018.7597.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Key Research and Development Program of China (2017YFC1700401 to YB and MZ), National Natural Science Foundation of China (81970335 and 82170285 to YB), and Science and Technology Commission of Shanghai Municipality (22ZR1423100 to JJ, and 23010500300 and 21SQBS00100 to YB).

Author information

Authors and Affiliations

Authors

Contributions

L Li, W Qi, Y Zhu, M Yin, C Chen, M Wei, Z Huang, and Z Su performed the experiments and analyzed the data. M Zhang provided technical assistance. Y Bei and J Jiang designed the study, instructed the experiments and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jizong Jiang, Mingxue Zhang or Yihua Bei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Editor-in-Chief Enrique Lara-Pezzi oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1693 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Qi, W., Zhu, Y. et al. Danlou Tablet Protects Against Cardiac Remodeling and Dysfunction after Myocardial Ischemia/Reperfusion Injury through Activating AKT/FoxO3a Pathway. J. of Cardiovasc. Trans. Res. 16, 803–815 (2023). https://doi.org/10.1007/s12265-023-10365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-023-10365-x

Keywords

Navigation