Skip to main content
Log in

Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kole MHP, Stuart GJ. Signal processing in the axon initial segment. Neuron 2012, 73: 235–247.

    Article  CAS  PubMed  Google Scholar 

  2. Yang R, Walder-Christensen KK, Lalani S, Yan H, García-Prieto ID, Álvarez S. Neurodevelopmental mutation of giant ankyrin-G disrupts a core mechanism for axon initial segment assembly. Proc Natl Acad Sci U S A 2019, 116: 19717–19726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Howard A, Tamas G, Soltesz I. Lighting the chandelier: New vistas for axo-axonic cells. Trends Neurosci 2005, 28: 310–316.

    Article  CAS  PubMed  Google Scholar 

  4. Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci 2017, 20: 1377–1383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Höfflin F, Jack A, Riedel C, Mack-Bucher J, Roos J, Corcelli C, et al. Heterogeneity of the axon initial segment in interneurons and pyramidal cells of rodent visual cortex. Front Cell Neurosci 2017, 11: 332.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci 2008, 28: 14329–14340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grubb MS, Burrone J. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 2010, 465: 1070–1074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuba H, Oichi Y, Ohmori H. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 2010, 465: 1075–1078.

    Article  CAS  PubMed  Google Scholar 

  9. Kuba H, Yamada R, Ishiguro G, Adachi R. Redistribution of Kv1 and Kv7 enhances neuronal excitability during structural axon initial segment plasticity. Nat Commun 2015, 6: 8815.

    Article  CAS  PubMed  Google Scholar 

  10. Galliano E, Hahn C, Browne LP, Villamayor PR, Tufo C, Crespo A, et al. Brief sensory deprivation triggers cell type-specific structural and functional plasticity in olfactory bulb neurons. J Neurosci 2021, 41: 2135–2151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Guan M, Zhang Y, Zhanghao K, Xi P. Glucose increases the length and spacing of the lattice structure of the axon initial segment. Microsc Res Tech 2022, 85: 2679–2691.

    Article  CAS  PubMed  Google Scholar 

  12. Jamann N, Dannehl D, Lehmann N, Wagener R, Thielemann C, Schultz C, et al. Sensory input drives rapid homeostatic scaling of the axon initial segment in mouse barrel cortex. Nat Commun 2021, 12: 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buffington SA, Rasband MN. The axon initial segment in nervous system disease and injury. Eur J Neurosci 2011, 34: 1609–1619.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huang CYM, Rasband MN. Axon initial segments: Structure, function, and disease. Ann NY Acad Sci 2018, 1420: 46–61.

    Article  PubMed  Google Scholar 

  15. Yue ZW, Wang YL, Xiao B, Feng L. Axon initial segment structural plasticity is involved in seizure susceptibility in a rat model of cortical dysplasia. Neurochem Res 2018, 43: 878–885.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki S, Maruyama S. Increase in diameter of the axonal initial segment is an early change in amyotrophic lateral sclerosis. J Neurol Sci 1992, 110: 114–120.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis DA. The chandelier neuron in schizophrenia. Dev Neurobiol 2011, 71: 118–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tai Y, Gallo NB, Wang M, Yu JR, Van Aelst L. Axo-axonic innervation of neocortical pyramidal neurons by GABAergic chandelier cells requires AnkyrinG-associated L1CAM. Neuron 2019, 102: 358-372.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Veres JM, Nagy GA, Vereczki VK, Andrási T, Hájos N. Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala. J Neurosci 2014, 34: 16194–16206.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lazarov E, Dannemeyer M, Feulner B, Enderlein J, Gutnick MJ, Wolf F, et al. An axon initial segment is required for temporal precision in action potential encoding by neuronal populations. Sci Adv 2018, 4: eaau8621.

  21. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, et al. Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 2017, 171: 1663-1677.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hallock HL, Quillian HM IV, Maynard KR, Mai Y, Chen HY, Hamersky GR, et al. Molecularly defined hippocampal inputs regulate population dynamics in the prelimbic cortex to suppress context fear memory retrieval. Biol Psychiatry 2020, 88: 554–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marek R, Xu L, Sullivan RKP, Sah P. Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 2018, 21: 654–658.

    Article  CAS  PubMed  Google Scholar 

  24. Mukherjee A, Caroni P. Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nat Commun 2018, 9: 2727.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lui JH, Nguyen ND, Grutzner SM, Darmanis S, Peixoto D, Wagner MJ, et al. Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 2021, 184: 489-506.e26.

    Article  CAS  PubMed  Google Scholar 

  26. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ. Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 2005, 492: 145–177.

    Article  PubMed  Google Scholar 

  27. Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, et al. Single-neuron projectome of mouse prefrontal cortex. Nat Neurosci 2022, 25: 515–529.

    Article  CAS  PubMed  Google Scholar 

  28. Goethals S, Brette R. Theoretical relation between axon initial segment geometry and excitability. eLife 2020, 9: e53432.

  29. Wu X, Li H, Huang J, Xu M, Xiao C, He S. Regulation of axon initial segment diameter by COUP-TFI fine-tunes action potential generation. Neurosci Bull 2022, 38: 505–518.

    Article  CAS  PubMed  Google Scholar 

  30. Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 2008, 11: 178–186.

    Article  CAS  PubMed  Google Scholar 

  31. Moradi Chameh H, Rich S, Wang L, Chen FD, Zhang L, Carlen PL, et al. Diversity amongst human cortical pyramidal neurons revealed via their sag currents and frequency preferences. Nat Commun 2021, 12: 2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Radnikow G, Feldmeyer D. Layer- and cell type-specific modulation of excitatory neuronal activity in the neocortex. Front Neuroanat 2018, 12: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tian C, Wang K, Ke W, Guo H, Shu Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front Cell Neurosci 2014, 8: 297.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hu W, Tian C, Li T, Yang M, Hou H, Shu Y. Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 2009, 12: 996–1002.

  35. Kole MHP, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 2007, 55: 633–647.

    Article  CAS  PubMed  Google Scholar 

  36. Seagar M, Russier M, Caillard O, Maulet Y, Fronzaroli-Molinieres L, De San Feliciano M, et al. LGI1 tunes intrinsic excitability by regulating the density of axonal Kv1 channels. Proc Natl Acad Sci U S A 2017, 114: 7719–7724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B. K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron 2008, 58: 387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brew HM, Gittelman JX, Silverstein RS, Hanks TD, Demas VP, Robinson LC, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol 2007, 98: 1501–1525.

  39. Brew HM, Hallows JL, Tempel BL. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J Physiol 2003, 548: 1–20.

  40. Naundorf B, Wolf F, Volgushev M. Unique features of action potential initiation in cortical neurons. Nature 2006, 440: 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  41. Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of action-potential initiation in neocortical pyramidal cells: Evidence from whole cell axon recordings. J Neurophysiol 2007, 97: 746–760.

    Article  PubMed  Google Scholar 

  42. McCormick DA, Shu Y, Yu Y. Neurophysiology: Hodgkin and Huxley model—still standing? Nature 2007, 445: E1–E2;discussionE2–3.

  43. Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci 2007, 8: 451–465.

    Article  CAS  PubMed  Google Scholar 

  44. Guo Y, Liu Z, Chen YK, Chai Z, Zhou C, Zhang Y. Neurons with multiple axons have functional axon initial segments. Neurosci Bull 2017, 33: 641–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Meeks JP, Mennerick S. Action potential initiation and propagation in CA3 pyramidal axons. J Neurophysiol 2007, 97: 3460–3472.

    Article  PubMed  Google Scholar 

  46. Wimmer VC, Reid CA, Mitchell S, Richards KL, Scaf BB, Leaw BT, et al. Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus. J Clin Investig 2010, 120: 2661–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Somogyi P. A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res 1977, 136: 345–350.

    Article  CAS  PubMed  Google Scholar 

  48. Nathanson AJ, Davies PA, Moss SJ. Inhibitory synapse formation at the axon initial segment. Front Mol Neurosci 2019, 12: 266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leterrier C. The axon initial segment: An updated viewpoint. J Neurosci 2018, 38: 2135–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shang Z, Huang J, Liu N, Zhang X. Bi-directional control of synaptic input summation and spike generation by GABAergic inputs at the axon initial segment. Neurosci Bull 2023, 39: 1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Schneider-Mizell CM, Bodor AL, Collman F, Brittain D, Bleckert A, Dorkenwald S, et al. (2021) Structure and function of axo-axonic inhibition. eLife, 10: e73783.

  52. Gour A, Boergens KM, Heike N, Hua Y, Laserstein P, Song K, et al. Postnatal connectomic development of inhibition in mouse barrel cortex. Science 2021, 371: eabb4534.

    Article  CAS  PubMed  Google Scholar 

  53. Gonchar Y, Turney S, Price JL, Burkhalter A. Axo-axonic synapses formed by somatostatin-expressing GABAergic neurons in rat and monkey visual cortex. J Comp Neurol 2002, 443: 1–14.

    Article  CAS  PubMed  Google Scholar 

  54. Inan M, Blázquez-Llorca L, Merchán-Pérez A, Anderson SA, DeFelipe J, Yuste R. Dense and overlapping innervation of pyramidal neurons by chandelier cells. J Neurosci 2013, 33: 1907–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Inan M, Anderson SA. The chandelier cell, form and function. Curr Opin Neurobiol 2014, 26: 142–148.

    Article  CAS  PubMed  Google Scholar 

  56. Little JP, Carter AG. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neurosci 2013, 33: 15333–15342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. J Neurophysiol 2008, 100: 2361–2380.

    Article  CAS  PubMed  Google Scholar 

  58. Ye M, Yang J, Tian C, Zhu Q, Yin L, Jiang S, et al. Differential roles of NaV1.2 and NaV1.6 in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures. Sci Rep 2018, 8: 753.

  59. Dodson PD, Barker MC, Forsythe ID. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci 2002, 22: 6953–6961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robbins CA, Tempel BL. Kv1.1 and Kv1.2: Similar channels, different seizure models. Epilepsia 2012, 53: 134–141.

    Article  CAS  PubMed  Google Scholar 

  61. Somogyi P, Nunzi MG, Gorio A, Smith AD. A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 1983, 259: 137–142.

    Article  CAS  PubMed  Google Scholar 

  62. Kisvárday ZF, Martin KA, Whitteridge D, Somogyi P. Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat. J Comp Neurol 1985, 241: 111–137.

    Article  PubMed  Google Scholar 

  63. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 2018, 563: 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen X, Sun YC, Zhan H, Kebschull JM, Fischer S, Matho K, et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell, 2019, 179: 772–786.e19.

  65. Harris KD, Shepherd GMG. The neocortical circuit: Themes and variations. Nat Neurosci 2015, 18: 170–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stoler O, Fleidervish IA. Functional implications of axon initial segment cytoskeletal disruption in stroke. Acta Pharmacol Sin 2016, 37: 75–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Zuoshi J. Huang for providing the Unc5b-CreER and Nkx2.1-Flp mice. We thank Dr. You-Sheng Shu and Dr. Miao He for their discussions and technical assistance. This work was supported by the National Natural Science Foundation of China (82071450, 31972903, and 32000681), Shanghai Pujiang Program (20PJ1401000), the Natural Science Foundation of Shanghai (20ZR1405700), Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01), ZJ Lab, the Shanghai Center for Brain Science and Brain-Inspired Technology, and the Fudan Undergraduate Research Opportunities Program (Wangdao 20046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li, Jiangteng Lu or Yilin Tai.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1337 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Zhao, R., Ren, B. et al. Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex. Neurosci. Bull. 39, 1050–1068 (2023). https://doi.org/10.1007/s12264-023-01038-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01038-5

Keywords

Navigation