Skip to main content

Advertisement

Log in

Recent Progress in Non-motor Features of Parkinson’s Disease with a Focus on Circadian Rhythm Dysregulation

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease, which manifests with both motor and non-motor symptoms. Circadian rhythm dysregulation, as one of the most challenging non-motor features of PD, usually appears long before obvious motor symptoms. Moreover, the dysregulated circadian rhythm has recently been reported to play pivotal roles in PD pathogenesis, and it has emerged as a hot topic in PD research. In this review, we briefly introduce the circadian rhythm and circadian rhythm-related genes, and then summarize recent research progress on the altered circadian rhythm in PD, ranging from clinical features to the possible causes of PD-related circadian disorders. We believe that future comprehensive studies on the topic may not only help us to explore the mechanisms of PD, but also shed light on the better management of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

DA:

Dopamine

SCN:

Suprachiasmatic nucleus

Clock:

Circadian locomotor output cycles kaput

Bmal1:

Brain and muscle Arnt-like protein 1

Per:

Period

Cry:

Cryptochrome

NPAS2:

Neuronal PAS domain protein 2

ROR:

Retinal related orphan receptor

RREs:

ROR response elements

NR1D1:

Nuclear receptor subfamily 1 group D member 1

Bhlhe:

Basic helix-loop-helix family member

Tim:

Timeless

DBP:

D-box-binding protein

REM:

Rapid eye movement

RBD:

Rapid eye movement sleep behavior disorder

BP:

Blood pressure

CBT:

Core-body temperature

HRV:

Heart rate variability

GI:

Gastrointestinal

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

SPECT:

Single photon emission computed tomography

NURR1:

Nuclear receptor-related 1 protein

TH:

Tyrosine hydroxylase

EDS:

Excessive daytime sleepiness

RLS:

Restless leg syndrome

MIBG:

Meta-iodobenzylguanidine

PSG:

Polysomnograph

MSE:

Multiscale entropy

NREM:

Non-REM

CAP:

Cycling alternating pattern

6-OHDA:

6-Hydroxydopamine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Mn:

Manganese

SIRT1:

Silent information regulator 1

HSF1:

Heat shock factor 1

RT-qPCR:

Real-time quantitative polymerase chain reaction

HPLC:

High-performance liquid chromatography

WB:

Western blotting

RIPD:

Rotenone-induced PD

LPS:

Lipopolysaccharides

ROT:

Rotenone

ATG5:

Autophagy-related gene 5

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

ATP:

Adenosine 5′-triphosphate

ASO:

Alpha-synuclein overexpressing

IHC:

Immunohistochemical staining

ELISA:

Enzyme linked immunosorbent assay

MSP:

Methylation-specific PCR

PCR-RFLP:

Polymerase chain reaction-restriction fragment length polymorphism

PPARγ:

Peroxisome proliferator-activated γ

References

  1. Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 2018, 10: a033118.

    PubMed  PubMed Central  Google Scholar 

  2. Li TB, Yang ZF, Li S, Cheng C, Shen BR, Le WD. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: Combined biomarkers for Parkinson’s disease. Front Aging Neurosci 2018, 10: 392.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chung SJ, Armasu SM, Anderson KJ, Biernacka JM, Lesnick TG, Rider DN. Genetic susceptibility loci, environmental exposures, and Parkinson’s disease: A case-control study of gene-environment interactions. Parkinsonism Relat Disord 2013, 19: 595–599.

    PubMed  PubMed Central  Google Scholar 

  4. Li TB, Le WD. Biomarkers for Parkinson’s disease: How good are they? Neurosci Bull 2020, 36: 183–194.

    PubMed  Google Scholar 

  5. Dickson DW. Parkinson’s disease and Parkinsonism: Neuropathology. Cold Spring Harb Perspect Med 2012, 2: a009258.

    PubMed  PubMed Central  Google Scholar 

  6. Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM, Reddy AB, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol 2014, 71: 589–595.

    PubMed  PubMed Central  Google Scholar 

  7. Radhakrishnan DM, Goyal V. Parkinson’s disease: A review. Neurol India 2018, 66: S26–S35.

    PubMed  Google Scholar 

  8. Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017, 18: 435–450.

    CAS  PubMed  Google Scholar 

  9. Schrag A, Horsfall L, Walters K, Noyce A, Petersen I. Prediagnostic presentations of Parkinson’s disease in primary care: A case-control study. Lancet Neurol 2015, 14: 57–64.

    PubMed  Google Scholar 

  10. Ma JF, Hou MM, Tang HD, Gao X, Liang L, Zhu LF, et al. REM sleep behavior disorder was associated with Parkinson’s disease: A community-based study. BMC Neurol 2016, 16: 123.

    PubMed  PubMed Central  Google Scholar 

  11. Trenkwalder C. Sleep dysfunction in Parkinson’s disease. Clin Neurosci N Y N Y 1998, 5: 107–114.

    CAS  Google Scholar 

  12. Zhang F, Niu L, Liu X, Liu Y, Li S, Yu H, et al. Rapid eye movement sleep behavior disorder and neurodegenerative diseases: An update. Aging Dis 2020, 11: 315–326.

    PubMed  PubMed Central  Google Scholar 

  13. Hood S, Amir S. Neurodegeneration and the circadian clock. Front Aging Neurosci 2017, 9: 170.

    PubMed  PubMed Central  Google Scholar 

  14. Ahsan Ejaz A, Sekhon IS, Munjal S. Characteristic findings on 24-h ambulatory blood pressure monitoring in a series of patients with Parkinson’s disease. Eur J Intern Med 2006, 17: 417–420.

    PubMed  Google Scholar 

  15. Kallio M, Haapaniemi T, Turkka J, Suominen K, Tolonen U, Sotaniemi K, et al. Heart rate variability in patients with untreated Parkinson’s disease. Eur J Neurol 2000, 7: 667–672.

    CAS  PubMed  Google Scholar 

  16. Pursiainen V, Haapaniemi TH, Korpelainen JT, Huikuri HV, Sotaniemi KA, Myllylä VV. Circadian heart rate variability in Parkinson’s disease. J Neurol 2002, 249: 1535–1540.

    PubMed  Google Scholar 

  17. Zhong G, Bolitho S, Grunstein R, Naismith SL, Lewis SJ. The relationship between thermoregulation and REM sleep behaviour disorder in Parkinson’s disease. PLoS ONE 2013, 8: e72661.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: Ultradian secretory pulsatility and diurnal variation. Neurobiol Aging 1997, 18: 285–289.

    CAS  PubMed  Google Scholar 

  19. Fasano A, Visanji NP, Liu LWC, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2015, 14: 625–639.

    CAS  PubMed  Google Scholar 

  20. Li SY, Wang YL, Wang F, Hu LF, Liu CF. A new perspective for Parkinson’s disease: Circadian rhythm. Neurosci Bull 2017, 33: 62–72.

    PubMed  Google Scholar 

  21. Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2020, 21: 67–84.

    CAS  PubMed  Google Scholar 

  22. Dardente H, Cermakian N. Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 2007, 24: 195–213.

    CAS  PubMed  Google Scholar 

  23. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 2012, 35: 445–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Logan RW, McClung CA. Rhythms of life: Circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 2019, 20: 49–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 2004, 5: 18.

    PubMed  PubMed Central  Google Scholar 

  26. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. PNAS 2005, 102: 3111–3116.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Doktór B, Damulewicz M, Pyza E. Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson’s disease models. BMC Neurosci 2019, 20: 24.

    PubMed  PubMed Central  Google Scholar 

  28. Lee C, Bae K, Edery I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: A basis for circadian transcription. Mol Cell Biol 1999, 19: 5316–5325.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Videnovic A, Willis GL. Circadian system - A novel diagnostic and therapeutic target in Parkinson’s disease? Mov Disord 2016, 31: 260–269.

    PubMed  PubMed Central  Google Scholar 

  30. Takahashi JS, Hong HK, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat Rev Genet 2008, 9: 764–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107: 855–867.

    CAS  PubMed  Google Scholar 

  32. Yujnovsky I, Hirayama J, Doi M, Borrelli E, Sassone-Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK: BMAL1. PNAS 2006, 103: 6386–6391.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Reinke H, Asher G. Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol 2019, 20: 227–241.

    CAS  PubMed  Google Scholar 

  34. Akashi M, Takumi T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 2005, 12: 441–448.

    CAS  PubMed  Google Scholar 

  35. Bunney BG, Li JZ, Walsh DM, Stein R, Vawter MP, Cartagena P, et al. Circadian dysregulation of clock genes: Clues to rapid treatments in major depressive disorder. Mol Psychiatry 2015, 20: 48–55.

    CAS  PubMed  Google Scholar 

  36. Videnovic A, Lazar AS, Barker RA, Overeem S. ’The clocks that time us’——circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 2014, 10: 683–693.

    PubMed  PubMed Central  Google Scholar 

  37. Gros P, Videnovic A. Overview of sleep and circadian rhythm disorders in Parkinson disease. Clin Geriatr Med 2020, 36: 119–130.

    PubMed  Google Scholar 

  38. Jin H, Zhang JR, Shen Y, Liu CF. Clinical significance of REM sleep behavior disorders and other non-motor symptoms of Parkinsonism. Neurosci Bull 2017, 33: 576–584.

    PubMed  PubMed Central  Google Scholar 

  39. Lin CY, Yu RL, Wu RM, Tan CH. Effect of ALDH2 on sleep disturbances in patients with Parkinson’s disease. Sci Rep 2019, 9: 18950.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Arnaldi D, Latimier A, Leu-Semenescu S, Vidailhet M, Arnulf I. Loss of REM sleep features across nighttime in REM sleep behavior disorder. Sleep Med 2016, 17: 134–137.

    PubMed  Google Scholar 

  41. Rodriguez CL, Jaimchariyatam N, Budur K. Rapid eye movement sleep behavior disorder: A review of the literature and update on current concepts. Chest 2017, 152: 650–662.

    PubMed  Google Scholar 

  42. Kim Y, Kim YE, Park EO, Shin CW, Kim HJ, Jeon B. REM sleep behavior disorder portends poor prognosis in Parkinson’s disease: A systematic review. J Clin Neurosci 2018, 47: 6–13.

    PubMed  Google Scholar 

  43. Yan YY, Lei K, Li YY, Liu XF, Chang Y. The correlation between possible RBD and cognitive function in Parkinson’s disease patients in China. Ann Clin Transl Neurol 2019, 6: 848–853.

    PubMed  PubMed Central  Google Scholar 

  44. Schrempf W, Brandt MD, Storch A, Reichmann H. Sleep disorders in Parkinson’s disease. J Parkinsons Dis 2014, 4: 211–221.

    PubMed  Google Scholar 

  45. Fereshtehnejad SM, Shafieesabet M, Shahidi GA, Delbari A, Lökk J. Restless legs syndrome in patients with Parkinson’s disease: A comparative study on prevalence, clinical characteristics, quality of life and nutritional status. Acta Neurol Scand 2015, 131: 211–218.

    PubMed  Google Scholar 

  46. Allen RP, Picchietti D, Hening WA, Trenkwalder C, Walters AS, Montplaisi J, et al. Restless legs syndrome: Diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med 2003, 4: 101–119.

    PubMed  Google Scholar 

  47. Jung JS, Lee HJ, Cho CH, Kang SG, Yoon HK, Park YM, et al. Association between restless legs syndrome and CLOCK and NPAS2 gene polymorphisms in schizophrenia. Chronobiol Int 2014, 31: 838–844.

    CAS  PubMed  Google Scholar 

  48. Whittom S, Dumont M, Petit D, Desautels A, Adam B, Lavigne G, et al. Effects of melatonin and bright light administration on motor and sensory symptoms of RLS. Sleep Med 2010, 11: 351–355.

    CAS  PubMed  Google Scholar 

  49. Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 2014, 71: 463–469.

    PubMed  PubMed Central  Google Scholar 

  50. Walker WH 2nd, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry 2020, 10: 28.

    PubMed  PubMed Central  Google Scholar 

  51. Goldstein AN, Walker MP. The role of sleep in emotional brain function. Annu Rev Clin Psychol 2014, 10: 679–708.

    PubMed  PubMed Central  Google Scholar 

  52. Armitage R. Sleep and circadian rhythms in mood disorders. Acta Psychiatr Scand Suppl 2007: 104–115.

  53. Vandekerckhove M, Cluydts R. The emotional brain and sleep: An intimate relationship. Sleep Med Rev 2010, 14: 219–226.

    PubMed  Google Scholar 

  54. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol 2009, 8: 464–474.

    CAS  PubMed  Google Scholar 

  55. Brown RG, Landau S, Hindle JV, Playfer J, Samuel M, Wilson KC, et al. Depression and anxiety related subtypes in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2011, 82: 803–809.

    PubMed  Google Scholar 

  56. Kronfeld-Schor N, Einat H. Circadian rhythms and depression: Human psychopathology and animal models. Neuropharmacology 2012, 62: 101–114.

    CAS  PubMed  Google Scholar 

  57. Hua P, Liu WG, Kuo SH, Zhao YY, Chen L, Zhang N, et al. Association of Tef polymorphism with depression in Parkinson disease. Mov Disord 2012, 27: 1694–1697.

    PubMed  PubMed Central  Google Scholar 

  58. Bedrosian TA, Nelson RJ. Sundowning syndrome in aging and dementia: Research in mouse models. Exp Neurol 2013, 243: 67–73.

    PubMed  Google Scholar 

  59. Kim J, Jang S, Choe HK, Chung S, Son GH, Kim K. Implications of circadian rhythm in dopamine and mood regulation. Mol Cells 2017, 40: 450–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lauretti E, Di Meco A, Merali S, Praticò D. Circadian rhythm dysfunction: A novel environmental risk factor for Parkinson’s disease. Mol Psychiatry 2017, 22: 280–286.

    CAS  PubMed  Google Scholar 

  61. Chung S, Lee EJ, Yun S, Choe HK, Park SB, Son HJ, et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 2014, 157: 858–868.

    CAS  PubMed  Google Scholar 

  62. Vallelonga F, di Stefano C, Merola A, Romagnolo A, Sobrero G, Milazzo V, et al. Blood pressure circadian rhythm alterations in alpha-synucleinopathies. J Neurol 2019, 266: 1141–1152.

    PubMed  Google Scholar 

  63. Kanegusuku H, Silva-Batista C, Peçanha T, Silva-Junior N, Queiroz A, Costa L, et al. Patients with Parkinson disease present high ambulatory blood pressure variability. Clin Physiol Funct Imaging 2017, 37: 530–535.

    PubMed  Google Scholar 

  64. Raupach AK, Ehgoetz Martens KA, Memarian N, Zhong G, Matar E, Halliday GM, et al. Assessing the role of nocturnal core body temperature dysregulation as a biomarker of neurodegeneration. J Sleep Res 2020, 29: e12939. https://doi.org/10.1111/jsr.12939.

    Article  PubMed  Google Scholar 

  65. Iranzo A, Molinuevo JL, Santamaría J, Serradell M, Martí MJ, Valldeoriola F, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: A descriptive study. Lancet Neurol 2006, 5: 572–577.

    PubMed  Google Scholar 

  66. Heart rate variability. standards of measurement, physiological interpretation, and clinical use. task force of the European society of cardiology and the North American society of pacing and electrophysiology. Eur Heart J 1996, 17: 354–381.

  67. Harnod D, Wen SH, Chen SY, Harnod T. The association of heart rate variability with parkinsonian motor symptom duration. Yonsei Med J 2014, 55: 1297–1302.

    PubMed  PubMed Central  Google Scholar 

  68. Haapaniemi TH, Pursiainen V, Korpelainen JT, Huikuri HV, Sotaniemi KA, Myllylä VV. Ambulatory ECG and analysis of heart rate variability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2001, 70: 305–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Breen DP, Nombela C, Vuono R, Jones PS, Fisher K, Burn DJ, et al. Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord 2016, 31: 1062–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bolitho SJ, Naismith SL, Rajaratnam SM, Grunstein RR, Hodges JR, Terpening Z, et al. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med 2014, 15: 342–347.

    CAS  PubMed  Google Scholar 

  71. Bubenik GA, Konturek SJ. Melatonin and aging: Prospects for human treatment. J Physiol Pharmacol 2011, 62: 13–19.

    CAS  PubMed  Google Scholar 

  72. Li LY, Zhao ZX, Ma JJ, Zheng JH, Huang S, Hu SY, et al. Elevated plasma melatonin levels are correlated with the non-motor symptoms in Parkinson’s disease: A cross-sectional study. Front Neurosci 2020, 14: 505.

    PubMed  PubMed Central  Google Scholar 

  73. Sommansson A, Saudi WS, Nylander O, Sjöblom M. Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 2013, 305: G95–G105.

    CAS  PubMed  Google Scholar 

  74. De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian rhythm abnormalities in Parkinson’s disease from humans to flies and back. Int J Mol Sci 2018, 19: E3911.

    PubMed  Google Scholar 

  75. Leng Y, Goldman SM, Cawthon PM, Stone KL, Ancoli-Israel S, Yaffe K. Excessive daytime sleepiness, objective napping and 11-year risk of Parkinson’s disease in older men. Int J Epidemiol 2018, 47: 1679–1686.

    PubMed  PubMed Central  Google Scholar 

  76. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019, 18: 307–318.

    PubMed  PubMed Central  Google Scholar 

  77. Hastings MH, Goedert M. Circadian clocks and neurodegenerative diseases: Time to aggregate?. Curr Opin Neurobiol 2013, 23: 880–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Musiek ES, Lim MM, Yang GR, Bauer AQ, Qi L, Lee Y, et al. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 2013, 123: 5389–5400.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lotankar S, Prabhavalkar KS, Bhatt LK. Biomarkers for Parkinson’s disease: Recent advancement. Neurosci Bull 2017, 33: 585–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Orimo S. New development of diagnosis and treatment for Parkinson’s disease. Rinsho Shinkeigaku 2017, 57: 259–273.

    PubMed  Google Scholar 

  81. Bourgouin PA, Rahayel S, Gaubert M, Arnaldi D, Hu M, Heidbreder A, et al. Neuroimaging of rapid eye movement sleep behavior disorder. Int Rev Neurobiol 2019, 144: 185–210.

    PubMed  Google Scholar 

  82. Vikene K, Skeie GO, Specht K. Abnormal phasic activity in saliency network, motor areas, and basal Ganglia in Parkinson’s disease during rhythm perception. Hum Brain Mapp 2019, 40: 916–927.

    PubMed  Google Scholar 

  83. Yousaf T, Pagano G, Wilson H, Politis M. Neuroimaging of sleep disturbances in movement disorders. Front Neurol 2018, 9: 767.

    PubMed  PubMed Central  Google Scholar 

  84. Oh YS, Kim JS, Yang DW, Koo JS, Kim YI, Jung HO, et al. Nighttime blood pressure and white matter hyperintensities in patients with Parkinson disease. Chronobiol Int 2013, 30: 811–817.

    PubMed  Google Scholar 

  85. Salsone M, Cerasa A, Arabia G, Morelli M, Gambardella A, Mumoli L, et al. Reduced thalamic volume in Parkinson disease with REM sleep behavior disorder: Volumetric study. Parkinsonism Relat Disord 2014, 20: 1004–1008.

    CAS  PubMed  Google Scholar 

  86. Chung SJ, Choi YH, Kwon H, Park YH, Yun HJ, Yoo HS, et al. Sleep disturbance may alter white matter and resting state functional connectivities in Parkinson's disease. Sleep 2017, 40. https://doi.org/10.1093/sleep/zsx009.

  87. Radziunas A, Deltuva VP, Tamasauskas A, Gleizniene R, Pranckeviciene A, Petrikonis K, et al. Brain MRI morphometric analysis in Parkinson’s disease patients with sleep disturbances. BMC Neurol 2018, 18: 88.

    PubMed  PubMed Central  Google Scholar 

  88. Filippi M, Elisabetta S, Piramide N, Agosta F. Functional MRI in idiopathic Parkinson’s disease. Int Rev Neurobiol 2018, 141: 439–467.

    CAS  PubMed  Google Scholar 

  89. Arnaldi D, Famà F, de Carli F, Morbelli S, Ferrara M, Picco A, et al. The role of the serotonergic system in REM sleep behavior disorder. Sleep 2015, 38: 1505–1509.

    PubMed  PubMed Central  Google Scholar 

  90. Manabe Y, Fujii D, Kono S, Sakai Y, Tanaka T, Narai H, et al. Systemic blood pressure profile correlates with cardiac 123I-MIBG uptake in patients with Parkinson’s disease. J Neurol Sci 2011, 307: 153–156.

    PubMed  Google Scholar 

  91. Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord 2010, 16: 252–255.

    PubMed  Google Scholar 

  92. Nomura T, Inoue Y, Högl B, Uemura Y, Kitayama M, Abe T, et al. Relationship between (123)I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Parkinsonism Relat Disord 2010, 16: 683–685.

    PubMed  Google Scholar 

  93. Chung CC, Kang JH, Yuan RY, Wu DA, Chen CC, Chi NF, et al. Multiscale entropy analysis of electroencephalography during sleep in patients with Parkinson disease. Clin EEG Neurosci 2013, 44: 221–226.

    PubMed  Google Scholar 

  94. Priano L, Bigoni M, Albani G, Sellitti L, Giacomotti E, Picconi R, et al. Sleep microstructure in Parkinson’s disease: Cycling alternating pattern (CAP) as a sensitive marker of early NREM sleep instability. Sleep Med 2019, 61: 57–62.

    PubMed  Google Scholar 

  95. Margis R, Schönwald SV, Carvalho DZ, Gerhardt GJ, Rieder CR. NREM sleep alpha and Sigma activity in Parkinson’s disease: Evidence for conflicting electrophysiological activity?. Clin Neurophysiol 2015, 126: 951–958.

    PubMed  Google Scholar 

  96. Wetter TC, Brunner H, Högl B, Yassouridis A, Trenkwalder C, Friess E. Increased alpha activity in REM sleep in de novo patients with Parkinson’s disease. Mov Disord 2001, 16: 928–933.

    CAS  PubMed  Google Scholar 

  97. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008, 79: 368–376.

    CAS  PubMed  Google Scholar 

  98. Shokrollahi M, Krishnan S. A review of sleep disorder diagnosis by electromyogram signal analysis. Crit Rev Biomed Eng 2015, 43: 1–20.

    PubMed  Google Scholar 

  99. Kudo T, Loh DH, Truong D, Wu YF, Colwell CS. Circadian dysfunction in a mouse model of Parkinson’s disease. Exp Neurol 2011, 232: 66–75.

    PubMed  Google Scholar 

  100. Le WD, Sayana P, Jankovic J. Animal models of Parkinson’s disease: A gateway to therapeutics?. Neurotherapeutics 2014, 11: 92–110.

    CAS  PubMed  Google Scholar 

  101. Wang YL, Lv D, Liu WW, Li SY, Chen J, Shen Y, et al. Disruption of the circadian clock alters antioxidative defense via the SIRT1-BMAL1 pathway in 6-OHDA-induced models of Parkinson’s disease. Oxid Med Cell Longev 2018, 2018: 4854732.

    PubMed  PubMed Central  Google Scholar 

  102. Li H, Fan XM, Luo Y, Song S, Liu J, Fan QY. Repeated manganese administration produced abnormal expression of circadian clock genes in the hypothalamus and liver of rats. Neurotoxicology 2017, 62: 39–45.

    CAS  PubMed  Google Scholar 

  103. Choudhury GR, Daadi MM. Charting the onset of Parkinson-like motor and non-motor symptoms in nonhuman primate model of Parkinson’s disease. PLoS One 2018, 13: e0202770. https://doi.org/10.1371/journal.pone.0202770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fifel K, Vezoli J, Dzahini K, Claustrat B, Leviel V, Kennedy H, et al. Alteration of daily and circadian rhythms following dopamine depletion in MPTP treated non-human Primates. PLoS One 2014, 9: e86240. https://doi.org/10.1371/journal.pone.0086240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Baydas G, Gursu MF, Yilmaz S, Canpolat S, Yasar A, Cikim G, et al. Daily rhythm of glutathione peroxidase activity, lipid peroxidation and glutathione levels in tissues of pinealectomized rats. Neurosci Lett 2002, 323: 195–198.

    CAS  PubMed  Google Scholar 

  106. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134: 329–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134: 317–328.

    CAS  PubMed  Google Scholar 

  108. Pfeffer M, Zimmermann Z, Gispert S, Auburger G, Korf HW, von Gall C. Impaired photic entrainment of spontaneous locomotor activity in mice overexpressing human mutant α-synuclein. Int J Mol Sci 2018, 19: E1651.

    PubMed  Google Scholar 

  109. Daneshvar Kakhaki R, Kouchaki E, Dadgostar E, Behnam M, Tamtaji OR, Nikoueinejad H, et al. The correlation of helios and neuropilin-1 frequencies with parkinson disease severity. Clin Neurol Neurosurg 2020, 192: 105833.

    PubMed  Google Scholar 

  110. Li H, Song S, Wang Y, Huang C, Zhang F, Liu J, et al. Correction to: Low-grade inflammation aggravates rotenone neurotoxicity and disrupts circadian clock gene expression in rats. Neurotox Res 2019, 35: 999–1000.

    CAS  PubMed  Google Scholar 

  111. Liu WW, Wei SZ, Huang GD, Liu LB, Gu C, Shen Y, et al. BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson’s disease mouse model. FASEB J 2020, 34: 6570–6581.

    CAS  PubMed  Google Scholar 

  112. Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C, Robinette ML, et al. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc Natl Acad Sci USA 2019, 116: 5102–5107.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sachdeva UM, Thompson CB. Diurnal rhythms of autophagy: Implications for cell biology and human disease. Autophagy 2008, 4: 581–589.

    CAS  PubMed  Google Scholar 

  114. Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017, 14: 299–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Moors TE, Hoozemans JJ, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, et al. Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener 2017, 12: 11.

    PubMed  PubMed Central  Google Scholar 

  116. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathol 2018, 28: 3–13.

    CAS  PubMed  Google Scholar 

  117. Kim J, Jang S, Choi M, Chung S, Choe Y, Choe HK, et al. Abrogation of the circadian nuclear receptor REV-ERBα exacerbates 6-hydroxydopamine-induced dopaminergic neurodegeneration. Mol Cells 2018, 41: 742–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Heng X, Jin G, Zhang X, Yang DH, Zhu MZ, Fu SJ, et al. Nurr1 regulates Top IIβ and functions in axon genesis of mesencephalic dopaminergic neurons. Mol Neurodegener 2012, 7: 4.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Chu YP, Le WD, Kompoliti K, Jankovic J, Mufson EJ, Kordower JH. Nurr1 in Parkinson’s disease and related disorders. J Comp Neurol 2006, 494: 495–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, et al. Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 2008, 273: 29–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jankovic J, Chen S, Le WD. The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 2005, 77: 128–138.

    CAS  PubMed  Google Scholar 

  122. Rouillard C, Baillargeon J, Paquet B, St-Hilaire M, Maheux J, Lévesque C, et al. Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson’s disease. Exp Neurol 2018, 304: 143–153.

    CAS  PubMed  Google Scholar 

  123. Humphries A, Weller J, Klein D, Baler R, Carter DA. NGFI-B (Nurr77/Nr4a1) orphan nuclear receptor in rat pinealocytes: Circadian expression involves an adrenergic-cyclic AMP mechanism. J Neurochem 2004, 91: 946–955.

    CAS  PubMed  Google Scholar 

  124. Kovács D, Sigmond T, Hotzi B, Bohár B, Fazekas D, Deák V, et al. HSF1Base: A comprehensive database of HSF1 (heat shock factor 1) target genes. Int J Mol Sci 2019, 20: E5815.

    PubMed  Google Scholar 

  125. Du YL, Wang F, Zou J, Le WD, Dong Q, Wang ZY, et al. Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiol Aging 2014, 35: 2316–2328.

    CAS  PubMed  Google Scholar 

  126. Maiese K. Novel treatment strategies for the nervous system: Circadian clock genes, non-coding RNAs, and forkhead transcription factors. Curr Neurovascular Res 2018, 15: 81–91.

    CAS  Google Scholar 

  127. Videnovic A, Klerman EB, Wang W, Marconi A, Kuhta T, Zee PC. Timed light therapy for sleep and daytime sleepiness associated with parkinson disease: A randomized clinical trial. JAMA Neurol 2017, 74: 411–418.

    PubMed  PubMed Central  Google Scholar 

  128. Bhadra U, Patra P, Pal-Bhadra M. Cardinal epigenetic role of non-coding regulatory RNAs in circadian rhythm. Mol Neurobiol 2018, 55: 3564–3576.

    CAS  PubMed  Google Scholar 

  129. Mehta N, Cheng HY. Micro-managing the circadian clock: The role of microRNAs in biological timekeeping. J Mol Biol 2013, 425: 3609–3624.

    CAS  PubMed  Google Scholar 

  130. Pacelli C, Rotundo G, Lecce L, Menga M, Bidollari E, Scrima R, et al. Parkin mutation affects clock gene-dependent energy metabolism. Int J Mol Sci 2019, 20: E2772.

    PubMed  Google Scholar 

  131. Okuzumi A, Hatano T, Ueno SI, Ogawa T, Saiki S, Mori A, et al. Metabolomics-based identification of metabolic alterations in PARK2. Ann Clin Transl Neurol 2019, 6: 525–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Cai Y, Liu S, Sothern RB, Xu S, Chan P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 2010, 17: 550–554.

    CAS  PubMed  Google Scholar 

  133. Ding H, Liu S, Yuan YP, Lin QL, Chan P, Cai YN. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett 2011, 499: 186–188.

    CAS  PubMed  Google Scholar 

  134. Lin Q, Ding H, Zheng Z, Gu Z, Ma J, Chen L, et al. Promoter methylation analysis of seven clock genes in Parkinson’s disease. Neurosci Lett 2012, 507: 147–150.

    CAS  PubMed  Google Scholar 

  135. Mao W, Zhao CS, Ding H, Liang K, Xue JH, Chan P, et al. Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson’s disease patients. Neurosci Lett 2018, 668: 115–119.

    CAS  PubMed  Google Scholar 

  136. Gu ZQ, Wang BB, Zhang YB, Ding H, Zhang YL, Yu J, et al. Association of ARNTL and PER1 genes with Parkinson’s disease: A case-control study of Han Chinese. Sci Rep 2015, 5: 15891.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Hua P, Liu WG, Chen DH, Zhao YY, Chen L, Zhang N, et al. Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J Affect Disord 2014, 157: 100–103.

    CAS  PubMed  Google Scholar 

  138. Lou F, Li M, Luo XG, Ren Y. CLOCK 3111T/C variant correlates with motor fluctuation and sleep disorders in Chinese patients with Parkinson’s disease. Parkinsons Dis 2018, 2018: 4670380.

    PubMed  PubMed Central  Google Scholar 

  139. McKenna D, Peever J. Degeneration of rapid eye movement sleep circuitry underlies rapid eye movement sleep behavior disorder. Mov Disord 2017, 32: 636–644.

    PubMed  Google Scholar 

  140. Rolinski M, Griffanti L, Piccini P, Roussakis AA, Szewczyk-Krolikowski K, Menke RA, et al. Basal Ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease. Brain 2016, 139: 2224–2234.

    PubMed  PubMed Central  Google Scholar 

  141. Videnovic A, Golombek D. Circadian dysregulation in Parkinson’s disease. Neurobiol Sleep Circadian Rhythms 2017, 2: 53–58.

    PubMed  Google Scholar 

  142. Sundaram S, Hughes RL, Peterson E, Müller-Oehring EM, Brontë-Stewart HM, Poston KL, et al. Establishing a framework for neuropathological correlates and glymphatic system functioning in Parkinson’s disease. Neurosci Biobehav Rev 2019, 103: 305–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Weissová K, Škrabalová J, Skálová K, Červená K, Bendová Z, Miletínová E, et al. Circadian rhythms of melatonin and peripheral clock gene expression in idiopathic REM sleep behavior disorder. Sleep Med 2018, 52: 1–6.

    PubMed  Google Scholar 

  144. Armstrong MJ, Okun MS. Diagnosis and treatment of parkinson disease: A review. JAMA 2020, 323: 548–560.

    PubMed  Google Scholar 

  145. Yamanaka Y, Hashimoto S, Masubuchi S, Natsubori A, Nishide SY, Honma S, et al. Differential regulation of circadian melatonin rhythm and sleep-wake cycle by bright lights and nonphotic time cues in humans. Am J Physiol Regul Integr Comp Physiol 2014, 307: R546–R557.

    CAS  PubMed  Google Scholar 

  146. Yamanaka Y, Hashimoto S, Takasu NN, Tanahashi Y, Nishide SY, Honma S, et al. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans. Am J Physiol Regul Integr Comp Physiol 2015, 309: R1112–R1121.

    CAS  PubMed  Google Scholar 

  147. Medeiros CAM, Carvalhedo de Bruin PF, Lopes LA, Magalhães MC, de Lourdes Seabra M, Sales de Bruin VM. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease. J Neurol 2007, 254: 459–464.

  148. Liu JB, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol 2016, 56: 361–383.

    CAS  PubMed  Google Scholar 

  149. Mishra A, Singh S, Tiwari V, Chaturvedi S, Wahajuddin M, Shukla S. Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling. Neurochem Int 2019, 129: 104463.

    CAS  PubMed  Google Scholar 

  150. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite interplay between the canonical WNT/β-catenin pathway and PPAR gamma: A potential therapeutic target in gliomas. Neurosci Bull 2018, 34: 573–588.

    PubMed  PubMed Central  Google Scholar 

  151. Vallée A, Lecarpentier Y, Vallée JN. Circadian rhythms and energy metabolism reprogramming in Parkinson’s disease. Curr Issues Mol Biol 2019, 31: 21–44.

    PubMed  Google Scholar 

  152. Hayashi A, Matsunaga N, Okazaki H, Kakimoto K, Kimura Y, Azuma H, et al. A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson’s disease. Neuromolecular Med 2013, 15: 238–251.

    CAS  PubMed  Google Scholar 

  153. Korshunov KS, Blakemore LJ, Trombley PQ. Dopamine: A modulator of circadian rhythms in the central nervous system. Front Cell Neurosci 2017, 11: 91.

    PubMed  PubMed Central  Google Scholar 

  154. Gizowski C, Bourque CW. Sodium regulates clock time and output via an excitatory GABAergic pathway. Nature 2020, 583: 421–424.

    CAS  PubMed  Google Scholar 

  155. Bubenik GA, Ball RO, Pang SF. The effect of food deprivation on brain and gastrointestinal tissue levels of tryptophan, serotonin, 5-hydroxyindoleacetic acid, and melatonin. J Pineal Res 1992, 12: 7–16.

    CAS  PubMed  Google Scholar 

  156. Rasmussen DD, Mitton DR, Larsen SA, Yellon SM. Aging-dependent changes in the effect of daily melatonin supplementation on rat metabolic and behavioral responses. J Pineal Res 2001, 31: 89–94.

    CAS  PubMed  Google Scholar 

  157. Zesiewicz TA, Hauser RA. Sleep attacks and dopamine agonists for Parkinson’s disease: What is currently known?. CNS Drugs 2003, 17: 593–600.

    CAS  PubMed  Google Scholar 

  158. Plowman BK, Boggie DT, Morreale AP, Schaefer MG, Delattre ML, Chan H. Sleep attacks in patients receiving dopamine-receptor agonists. Am J Health Syst Pharm 2005, 62: 537–540.

    PubMed  Google Scholar 

  159. Ryan M, Slevin JT, Wells A. Non-ergot dopamine agonist-induced sleep attacks. Pharmacotherapy 2000, 20: 724–726.

    CAS  PubMed  Google Scholar 

  160. Tan EK. Piribedil-induced sleep attacks in Parkinson’s disease. Fundam Clin Pharmacol 2003, 17: 117–119.

    CAS  PubMed  Google Scholar 

  161. Frucht S, Rogers JD, Greene PE, Gordon MF, Fahn S. Falling asleep at the wheel: Motor vehicle mishaps in persons taking pramipexole and ropinirole. Neurology 1999, 52: 1908–1910.

    CAS  PubMed  Google Scholar 

  162. Chaudhuri KR, Pal S, Brefel-Courbon C. ‘Sleep attacks’ or ‘unintended sleep episodes’ occur with dopamine agonists: Is this a class effect?. Drug Saf 2002, 25: 473–483.

    CAS  PubMed  Google Scholar 

  163. Li SY, Wang YL, Liu WW, Lyu DJ, Wang F, Mao CJ, et al. Long-term levodopa treatment accelerates the circadian rhythm dysfunction in a 6-hydroxydopamine rat model of Parkinson’s disease. Chin Med J 2017, 130: 1085–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Mattam U, Jagota A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 2015, 16: 109–123.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Nature Science Foundation of China (81771521), Key Research and Development Plan of Liaoning Science and Technology Department (2018225051), Guangdong Provincial Key R&D Program (2018B030337001), and the National Key Research and Development Program of China (2016YFC1306600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Le.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Niu, L., Liu, X. et al. Recent Progress in Non-motor Features of Parkinson’s Disease with a Focus on Circadian Rhythm Dysregulation. Neurosci. Bull. 37, 1010–1024 (2021). https://doi.org/10.1007/s12264-021-00711-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00711-x

Keywords

Navigation