Skip to main content
Log in

Culture Optimization Strategy for 1-Deoxynojirimycin-producing Bacillus methylotrophicus K26 Isolated from Korean Fermented Soybean Paste, Doenjang

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

1-Deoxynojirimycin (1-DNJ) is an α-glucosidase inhibitor that is used for the treatment of type 2 diabetes. In this study, we isolated Bacillus methylotrophicus K26 with α-glucosidase inhibition (AGI) activity from Korean fermented soybean paste (Doenjang) and confirmed that the genome harbored the DNJ biosynthesis genes including gabT1, yktc1, and gutB1 by PCR screening, while 1-DNJ production was confirmed by ultra-performance liquid chromatography–quadrupole time-of-flight–mass spectrometry. To increase 1-DNJ production by B. methylotrophicus K26, culture conditions were optimized with one-factor-ata- time (OFAT) and response surface methodology (RSM) approaches. Screen of 11 carbon and 9 nitrogen sources by the OFAT method identified sucrose and yeast extract as optimal culture components. Sucrose concentration (X1), yeast extract concentration (X2), and culture temperature (X3) were selected as independent variables for central composite design. The coefficient of determination (R2) for the model was 0.927, and the probability value of the regression model was highly significant. RSM predicted the optimal conditions for 1-DNJ production by B. methylotrophicus K26 as sucrose and yeast extract concentrations of 4.61% and 7.03%, respectively, at a temperature of 34°C. Under these conditions, AGI activity was experimentally measured as 89.3%, which was close to the predicted value of 91.9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muoio, D. M. and C. B. Newgard (2008) Mechanisms of disease: Molecular and metabolic mechanisms of insulin resistance and ß–cell failure in type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9: 193–205.

    Article  CAS  PubMed  Google Scholar 

  2. Harrigan, R. A., M. S. Nathan, and P. Beattie (2001) Oral agents for the treatment of type 2 diabetes mellitus: pharmacology, toxicity, and treatment. Ann. Emerg. Med. 38: 68–78.

    Article  CAS  PubMed  Google Scholar 

  3. Asano, N. (2009) Sugar–mimicking glycosidase inhibitors: bioactivity and application. Cell. Mol. Life Sci. 66: 1479–1492.

    Article  CAS  PubMed  Google Scholar 

  4. Truscheit, E., W. Frommer, B. Junge, L. Muller, D. D. Schmidit, and W. Wingender (1981) Chemistry and biochemistry of microbial a–glucosidase inhibitors. Angew. Chem. Int. Ed. Engl. 20: 744–761.

    Article  Google Scholar 

  5. Sels, J. P. J., M. S. Huijberts, and B. H. Wolffenbuttel (1999) Miglitol, a new a–glucosidase inhibitor. Expert Opin. Pharmacother. 1: 149–156.

    Article  CAS  PubMed  Google Scholar 

  6. Dabhi, A. S., N. R. Bhatt, and M. J. Shah (2013) Voglibose: an alpha glucosidase inhibitor. J. Clin. Diagn. Res. 7: 3023.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Asano, N. (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiolog. 13: 93R–104R.

    Article  CAS  Google Scholar 

  8. Bytzer, P., N. Talley, M. P. Jones, and M. Horowitz (2001) Oral hypoglycaemic drugs and gastrointestinal symptoms in diabetes mellitus. Aliment. Pharmacol. Ther. 15: 137–142.

    Article  CAS  PubMed  Google Scholar 

  9. Odawara, M., C. Bannai, T. Saitoh, Y. Kawakami, and K. Yamashita (1997) Potentially lethal ileus associated with acarbose treatment for NIDDM. Diabetes Care 20: 1210–1211.

    Article  CAS  PubMed  Google Scholar 

  10. Van De Laar, F. A., P. L. Lucassen, R. P. Akkermans, E. H. van de Lisdonk, G. E. Rutten, and C. van Weel (2005) a–Glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta–analysis. Diabetes Car. 28: 154–163.

    Article  Google Scholar 

  11. Asano, N., R. J. Nash, R. J. Molyneux, and G. W. Fleet (2000) Sugar–mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetr. 11: 1645–1680.

    Article  CAS  Google Scholar 

  12. Asano, N., H. Kizu, K. Oseki, E. Tomioka, K. Matsui, M. Okamoto, and M. Baba (1995) N–Alkylated nitrogen–in–the–ring sugars: conformational basis of inhibition of glycosidases and HIV–1 replication. J. Med. Chem. 38: 2349–2356.

    Article  CAS  PubMed  Google Scholar 

  13. Asano, N., E. Tomioka, H. Kizu, and K. Matsui (1994) Sugars with nitrogen in the ring isolated from the leaves of Morus bombycis. Carbohydr. Res. 253: 235–245.

    Article  CAS  PubMed  Google Scholar 

  14. Watson, A. A., G. W. Fleet, N. Asano, R. J. Molyneux, and R. J. Nash (2001) Polyhydroxylated alkaloids—natural occurrence and therapeutic applications. Phytochemistr. 56: 265–295.

    Article  CAS  Google Scholar 

  15. Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. Wellington (1991) The biosynthesis of deoxynojirimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 729–730.

    Google Scholar 

  16. Paek, N. S., D. J. Kang, Y. J. Choi, J. J. Lee, T. H. Kim, and K. W. Kim (1997) Production of 1–deoxynojirimycin by Streptomyces sp. SID9135. J. Microbiol. Biotechnol. 7: 262–266.

    CAS  Google Scholar 

  17. Stein, D. C., L. K. Kopec, R. E. Yasbin, and F. E. Young (1984) Characterization of Bacillus subtilis DSM704 and its production of 1–deoxynojirimycin. Appl. Environ. Microbiol. 48: 280–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hardick, D. J. and D. W. Hutchinson (1993) The biosynthesis of 1–deoxynojirimycin in Bacillus subtilis var niger. Tetrahedro. 49: 6707–6716.

    Article  CAS  Google Scholar 

  19. Kang, K. D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, S. K. Rhee, J. H. Chung, O. Kwon, and S. I. Seong (2011) Identification of the genes involved in 1–deoxynojirimycin synthesis in Bacillus subtilis MORI 3K–85. J. Microbiol. 49: 431–440.

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, Y. P., L. J. Yin, Y. Q. Cheng, K. Yamaki, Y. Mori, Y. C. Su, and L. T. Li (2008) Effects of sources of carbon and nitrogen on production of a–glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2. Food Chem. 109: 737–742.

    Article  CAS  PubMed  Google Scholar 

  21. Cho, Y. S., Y. S. Park, J. Y. Lee, K. D. Kang, K. Y. Hwang, and S. I. Seong (2008) Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1–deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401–1407.

    Article  CAS  Google Scholar 

  22. Cai, D., M. Liu, X. Wei, X. Li, Q. Wang, C. T. Nomura, and S. Chen (2017) Use of Bacillus amyloliquefaciens HZ–12 for high–level production of the blood glucose lowering compound, 1–deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation. Appl. Biochem. Biotechnol. 181: 1108–1122.

    Article  CAS  PubMed  Google Scholar 

  23. Seo, M. J., Y. D. Nam, S. Y. Lee, S. L. Park, S. H. Yi, and S. I. Lim (2013) Isolation of the putative biosynthetic gene cluster of 1–deoxynojirimycin by Bacillus amyloliquefaciens 140N, its production and application to the fermentation of soybean paste. Biosci. Biotechnol. Biochem. 77: 398–401.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, Y. S. and H. B. Kim (2016) Optimization of culture conditions of Bacillus subtilis with a–glucosidase inhibitory activity. Int. J. Indust. Entomol. 33: 24–30.

    Article  Google Scholar 

  25. Wei, Z. J., L. C. Zhou, H. Chen, and G. H. Chen (2011) Optimization of the fermentation conditions for 1–deoxynojirimycin production by Streptomyces lawendulae applying the response surface methodology. Int. J. Food Eng. 7: 1–10.

    Article  CAS  Google Scholar 

  26. Zhu, Y., X. Li, C. Teng, and B. Sun (2013) Enhanced production of a–glucosidase inhibitor by a newly isolated strain of Bacillus subtilis B2 using response surface methodology. Food Bioprod. Proces. 91: 264–270.

    Article  CAS  Google Scholar 

  27. Zhu, Y. P., K. Yamaki, T. Yoshihashi, M. Ohnishi Kameyama, X. T. Li, Y. Q. Cheng, Y. Mori, and L. T. Li (2010) Purification and identification of 1–deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (Meitaoza). J. Agric. Food Chem. 58: 4097–4103.

    Article  CAS  PubMed  Google Scholar 

  28. Onose, S., R. Ikeda, K. Nakagawa, T. Kimura, K. Yamagishi, O. Higuchi, and T. Miyazawa (2013) Production of the a–glycosidase inhibitor 1–deoxynojirimycin from Bacillus species. Food Chem. 138: 516–523.

    Article  CAS  PubMed  Google Scholar 

  29. Vichasilp, C., K. Nakagawa, P. Sookwong, Y. Suzuki, F. Kimura, O. Higuchi, and T. Miyazawa (2009) Optimization of 1–deoxynojirimycin extraction from mulberry leaves by using response surface methodology. Biosci. Biotechnol. Biochem. 73: 2684–2689.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, T., C. Q. Li, H. Zhang, and J. W. Li (2014) Response surface optimized extraction of 1–deoxynojirimycin from mulberry leaves (Morus alba L.) and preparative separation with resins. Molecule. 19: 7040–7056.

    Article  CAS  Google Scholar 

  31. Jiang, Y. G., C. Y. Wang, C. Jin, J. Q. Jia, X. Guo, G. Z. Zhang, and Z. Z. Gui (2014) Improved 1–Deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Braz. J. Microbiol. 45: 721–729.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vichasilp, C., K. Nakagawa, P. Sookwong, O. Higuchi, S. Luemunkong, and T. Miyazawa (2012) Development of high 1–deoxynojirimycin (DNJ) content mulberry tea and use of response surface methodology to optimize tea–making conditions for highest DNJ extraction. LWT–Food Sci. Technol. 45: 226–232.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2014R1A1A1002980) and the Ministry of Education (NRF-2016R1D1A1B03931582). This work was also supported by the Main Research Program (E0170602-02) of the Korea Food Research Institute (KFRI) funded by the Ministry of Science, and ICT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Ho Seo or Myung-Ji Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Shin, HH., Kim, H.R. et al. Culture Optimization Strategy for 1-Deoxynojirimycin-producing Bacillus methylotrophicus K26 Isolated from Korean Fermented Soybean Paste, Doenjang. Biotechnol Bioproc E 23, 424–431 (2018). https://doi.org/10.1007/s12257-018-0159-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0159-y

Keywords

Navigation