Skip to main content
Log in

Angiogenesis inhibition, hypoxia, and targeting the bone marrow microenvironment in multiple myeloma: new strategies and targets

  • short review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a hematological B-cell malignancy that has still a fatal prognosis. Although the treatments have improved, one major problem in MM is the clinical resistance to available drugs and combination therapies over time. Novel agents, such as oral proteasome inhibitors, monoclonal antibodies, second generation immunomodulatory drugs and therapies targeting the cell signaling and the tumor microenvironment are in development for the treatment of relapsed/refractory MM. In this review, we refer on the role of new strategies targeting the tumor microenvironment, especially on angiogenesis, hypoxia and other interactions between MM and bone marrow components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–28.

    Article  PubMed  Google Scholar 

  2. Strobeck M. Multiple myeloma therapies. Nat Rev Drug Discov. 2007;6(3):181–2.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28(5):1122–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rajkumar SV, Gahrton G, Bergsagel PL. Approach to the treatment of multiple myeloma: a clash of philosophies. Blood. 2011;118(12):3205–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. http://seer.cancer.gov/csr/1975_2011/results_merged/topic_lifetime_risk.pdf.

  6. Fowler JA, Mundy GR, Lwin ST, Edwards CM. Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt Inhibitor Dkk1. Cancer Res. 2012;72(9):2183–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014;2014:198539.

    PubMed Central  PubMed  Google Scholar 

  8. Ribatti D, Vacca A. The role of microenvironment in tumor angiogenesis. Genes Nutr. 2008;3(1):29–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 2013;19(13):3360–8.

    Article  Google Scholar 

  10. Vacca A, Ribatti D. Bone marrow angiogenesis in multiple myeloma. Leukemia. 2006;20(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  11. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P, et al. Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica. 2000;85(8):800–5.

    CAS  PubMed  Google Scholar 

  12. Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y, et al. Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int. 2004;54(5):285–94.

    Article  CAS  PubMed  Google Scholar 

  13. Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B, et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol. 2009;2:36.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R, et al. Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia. 2004;18(3):624–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, et al. Phase II Study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res. 2004;10(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  16. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T, et al. GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood. 2004;103(9):3474–9.

    Article  CAS  PubMed  Google Scholar 

  17. Kovacs M, Reece D, Marcellus D, Meyer R, Mathews S, Dong RP, et al. A phase II study of ZD6474 (Zactima), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs. 2006;24(6):529–35.

    CAS  PubMed  Google Scholar 

  18. Prince HM, Hönemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, et al. Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood. 2009;113:4819–20.

    Article  CAS  PubMed  Google Scholar 

  19. Van Meter ME, Kim ES. Bevacizumab: current updates in treatment. Curr Opin Oncol. 2010;22(6):586–91.

    Article  PubMed  Google Scholar 

  20. Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O'Donnell MR, et al. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol. 2011;154(4):533–5.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Raschko M, Markovina S, Miyamoto S, Longo W, Williams E, McFarland T, et al. Phase II trial of bevacizumab combined with low dose dexamethasone and lenalidomide (BEV/REV/DEX) for relapsed or refractory myeloma (MM). ASH Annu Meet Abstracts. 2007;110(11):1173.

    Google Scholar 

  22. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood. 2012;119(24):5782–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ghobrial IM, Shain K, Hanlon C, Banwait R, Azab AK, Laubach JP, et al. Phase I/II Trial of Plerixafor and Bortezomib As a Chemosensitization Strategy In Relapsed Or Relapsed/Refractory Multiple Myeloma. Annual Meeting of American Society of Hematology 2013. Blood;122(21):1947a.

  26. Ludwig H, Weisel K, Engelhardt M, Greil R, Cafro AM, Petrucci MT et al. Anti-CXCL12/SDF-1 Spiegelmer® Nox-A12 Alone and In Combination With Bortezomib and Dexamethasone In Patients With Relapsed Multiple Myeloma: Results From A Phase IIa Study. Annual Meeting of American Society of Hematology 2013. Blood;122(21):1951.

  27. Ria R, Catacchio I, Berardi S, De Luisi A, Caivano A, Piccoli C, et al. HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin Cancer Res. 2014;20(4):847–58.

    Article  CAS  PubMed  Google Scholar 

  28. Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D, et al. Hypoxia-inducible factor (HIF)-1alpha suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia. 2013;27(8):1697–706.

    Article  CAS  PubMed  Google Scholar 

  29. Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T, et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood. 2012;119(6):1468–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kibler C, Schermutzki F, Waller HD, Timpl R, Muller CA, Klein G. Adhesive interactions of human multiple myeloma cell lines with different extracellular matrix molecules. Cell Adhes Commun. 1998;5(4):307–23.

    Article  CAS  PubMed  Google Scholar 

  31. Liebisch P, Eppinger S, Schopflin C, Stehle G, Munzert G, Dohner H, et al. CD44v6, a target for novel antibody treatment approaches, is frequently expressed in multiple myeloma and associated with deletion of chromosome arm 13q. Haematologica. 2005;90(4):489–93.

    CAS  PubMed  Google Scholar 

  32. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res. 2006;66(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  33. Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114(18):3960–7.

    Article  CAS  PubMed  Google Scholar 

  34. Caers J, Menu E, De Raeve H, Lepage D, Van Valckenborgh E, Van Camp B, et al. Antitumour and antiangiogenic effects of Aplidin in the 5TMM syngeneic models of multiple myeloma. Br J Cancer. 2008;98(12):1966–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, et al. Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 2008;68(13):5216–25.

    Article  CAS  PubMed  Google Scholar 

  36. Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia. 2003;17(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  37. Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008;130(6):1119–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

Normann Steiner, Johann Kern, Gerold Untergasser and Eberhard Gunsilius declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Normann Steiner MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, N., Kern, J., Untergasser, G. et al. Angiogenesis inhibition, hypoxia, and targeting the bone marrow microenvironment in multiple myeloma: new strategies and targets. memo 7, 202–205 (2014). https://doi.org/10.1007/s12254-014-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-014-0184-2

Keywords

Navigation