Skip to main content
Log in

Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Disruption of epigenetic regulation and characteristic metabolic alterations (known as the Warburg-effect) are well-known hallmarks of cancer. In our study we investigated the expression levels of microRNAs and histone deacetylase enzymes via RT-qPCR in bone marrow specimens of adult patients suffering from hematological malignancies (total cohort n = 40), especially acute myeloid leukemia (n = 27). The levels of the three examined Warburg-effect related microRNAs (miR-378*, miR-23b, miR-26a) positively correlated with each other and the oncogenic miR-155 and miR-125b, while negatively with the level of the tumorsuppressor miR-124. Significant relationships have been confirmed between the levels of SIRT6, HDAC4 and the microRNAs listed above. In NPM1-mutated AML (n = 6), the level of miR-125b was significantly lower than in the group of AML patients not carrying this mutation (n = 13) (p < 0.05). In M5 FAB type of AML (n = 5), the level of miR-124 was significantly higher compared to the M2 group (n = 7) (p < 0.05). In two cases of FAB M5 AML, the levels of SIRT6 and miR-26a increased during the first 4 weeks of treatment. In the total cohort, white blood cell count at the time of the diagnosis significantly correlated with the levels of HDAC4, SIRT6, miR-124 and miR-26a. Our results suggest that Warburg-effect related microRNAs may have important role in the pathogenesis of leukemia, and the potential oncogenic property of HDAC4 and SIRT6 cannot be excluded in hematological malignancies. Elevated level of miR-125b can contribute to adverse prognosis of AML without NPM1 mutation. The prevailment of the tumorsuppressor property of miR-124 may depend on the accompanying genetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  2. Brait M, Sidransky D. Cancer Epigenetics: above and beyond. Toxicol Mech Methods 2011;21(4):275–288.

  3. Jin LH, Wei C (2014) Role of microRNAs in the Warburg effect and mitochondrial metabolism in cancer. Asian Pac J Cancer Prev 15(17):7015–7019

    Article  PubMed  Google Scholar 

  4. Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao S, Xu W, Jiang W et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21(3):297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Havelange V, Garzon R (2010) MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol 85(12):935–942

    Article  CAS  PubMed  Google Scholar 

  8. Spizzo R, Nicoloso MS, Croce CM, Calin GA (2009) SnapShot: microRNAs in cancer. Cell 137(3):586–586

    Article  CAS  PubMed  Google Scholar 

  9. Marcucci G, Mrózek K, Radmacher MD et al (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117(4):1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schotte D, De Menezes RX, Akbari Moqadam F et al (2011) MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 96(5):703–711

    Article  PubMed  PubMed Central  Google Scholar 

  11. Agirre X, Vilas-Zornoza A, Jiménez-Velasco A et al (2009) Epigenetic silencing of the tumor suppressor microRNA hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 69(10):4443–4453

    Article  CAS  PubMed  Google Scholar 

  12. Khalaj M, Tavakkoli M, Stranahan AW, Park CY (2014) Pathogenic microRNA's in myeloid malignancies. Front Genet 5:361. doi:10.3389/fgene.2014.00361

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eichner LJ, Perry MC, Dufour CR et al (2010) miR-378(∗) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 12(4):352–361

    Article  CAS  PubMed  Google Scholar 

  14. Gao P, Tchernyshyov I, Chang TC et al (2009) C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen B, Liu Y, Jin X et al (2014) MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer 14:443. doi:10.1186/1471-2407-14-443

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sebastián C, Zwaans BM, Silberman DM et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6):1185–1199

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhong L, D'Urso A, Toiber D et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140(2):280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong L, Mostoslavsky R (2010) SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 1(1):17–21

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shan C, Elf S, Ji Q et al (2014) Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell 55(4):552–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Czimmerer Z, Hulvely J, Simandi Z et al (2013) A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules. PLoS One 8(1):e55168. doi:10.1371/journal.pone.0055168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu YD, Wang L, Sun C et al (2012) Distinctive microRNA signature is associated with the diagnosis and prognosis of acute leukemia. Med Oncol 29(4):2323–2331

    Article  CAS  PubMed  Google Scholar 

  22. Jiang W, Min J, Sui X et al (2015) MicroRNA-26a-5p and microRNA-23b-3p up-regulate peroxiredoxin III in acute myeloid leukemia. Leuk Lymphoma 56(2):460–471

    Article  CAS  PubMed  Google Scholar 

  23. Jiang S, Zhang LF, Zhang HW et al (2012) A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J 31(8):1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen L, Shi Y, Liu S et al (2014) PKM2: the thread linking energy metabolism reprogramming with epigenetics in cancer. Int J Mol Sci 15(7):11435–11445

    Article  PubMed  PubMed Central  Google Scholar 

  25. Busch S, Auth E, Scholl F et al (2015) 5-lipoxygenase is a direct target of miR-19a-3p and miR-125b-5p. J Immunol 194(4):1646–1653

    Article  CAS  PubMed  Google Scholar 

  26. Etchegaray JP, Chavez L, Huang Y et al (2015) The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine. Nat Cell Biol 17(5):545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakajima H, Kunimoto H (2014) TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci 105(9):1093–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheng J, Guo S, Chen S et al (2013) An extensive network of TET2-targeting microRNAs regulates malignant hematopoiesis. Cell Rep 5(2):471–481

    Article  CAS  PubMed  Google Scholar 

  29. Wang JC, Kafeel MI, Avezbakiyev B et al (2011) Histone deacetylase in chronic lymphocytic leukemia. Oncology 81(5–6):325–329

    Article  CAS  PubMed  Google Scholar 

  30. Zhou J, Bi C, Chng WJ et al (2011) PRL-3, a metastasis associated tyrosine phosphatase, is involved in FLT3-ITD signaling and implicated in anti-AML therapy. PLoS One 6(5):e19798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirsch P, Qassa G, Marzac C et al (2015) Acute myeloid leukemia in patients older than 75: prognostic impact of FLT3-ITD and NPM1 mutations. Leuk Lymphoma 56(1):147–150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for all members of the Genomic Medicine and Bioinformatic Core Facility (Department of Biochemistry and Molecular Biology, University of Debrecen), especially Tamás Kerekes for useful technical advices, Dóra Bojcsuk for performing cluster analysis and Erzsébet Mátyás for managing the ordering process of the necessary primers.

Financial support of our work was partially provided by the European Union and the European Social Fund (TÁMOP-4.1.2. E-13/1/KONV-2013-0010). Balint L. Balint is a Szodoray fellow of the University of Debrecen Medical Faculty, and during the preparation of the manuscript was a Magyary Zoltan fellow supported by the TÁMOP 4.2.4. A/2-11-1-2012-0001 grant implemented through the New Hungary Development Plan co-financed by the European Social Fund and the European Regional Development Fund. His work was supported by an internal Research University grant of the University of Debrecen entitled “Dissecting the genetic and epigenetic components of gene expression regulation in the context of the 1000 genomes project”.

Author Contributions

Gaál Zs.: design research, experimental procedures, data analysis, writing the manuscript.

Oláh É.: design research, supervision of experimental procedures, correction of the manuscript.

Rejtő L.: collection of bone marrow specimens, correction of the manuscript.

Bálint BL.: providing laboratory background (Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, University of Debrecen) and primers, design research, supervision of experimental procedures, correction of the manuscript.

Csernoch L.: design research, supervision of experimental procedures, correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Csernoch.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Grants

TÁMOP-4.1.2. E-13/1/KONV-2013-0010, TÁMOP 4.2.4. A/2–11–1-2012-0001

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaál, Z., Oláh, É., Rejtő, L. et al. Expression Levels of Warburg-Effect Related microRNAs Correlate with each Other and that of Histone Deacetylase Enzymes in Adult Hematological Malignancies with Emphasis on Acute Myeloid Leukemia. Pathol. Oncol. Res. 23, 207–216 (2017). https://doi.org/10.1007/s12253-016-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-016-0151-9

Keywords

Navigation