Skip to main content

Advertisement

Log in

MicroRNA-181a Functions as an Oncomir in Gastric Cancer by Targeting the Tumour Suppressor Gene ATM

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Based on our previous experiments, this study is to further investigate the functional significance of miR-181a and its target gene in gastric cancer. Expression of miR-181a was detected by qRT-PCR in three normal gastric tissues and three human gastric cancer cell lines (SGC-7901, MGC-803, and BGC-823 cells). After transfection with miR-181a inhibitor, proliferation, apoptosis, migration, and invasion of the SGC-7901 cells were evaluated. Ataxia-telangiectasia mutation (ATM) was predicted as a target gene of miR-181a with bioinformatics analysis, and was verified by lucifersae reporter assay. Expression of ATM protein in HEK293T cells and tissues was measured by Western Blot. Expression of ATM mRNA in HEK293T cells was measured by RT-PCR. Compared with three non-tumour tissues, the expression of miR-181a in three gastric cancer cells was significantly increased by 26.68, 14.83 and 14.96 folds; Compared with Negative Control(NC) and blank groups, transfection of miR-181a inhibitor led to inhibition of SGC7901 cell proliferation, invasion, and migration as well as promotion of apoptosis. A luciferase reporter assay demonstrated that ATM was a direct target of miR-181a, miR-181a mimics transfection down regulated ATM mRNA and protein expression. There was inverse correlation between miR-181a and ATM protein expression in gastric cancer and normal gastric tissues. Our study demonstrates that over-expression of miR-181a might be involved in development of gastric cancer by promoting proliferation and inhibiting apoptosis probably through directly targeting ATM. miR-181a modulation may be a potential strategy for the development of miRNA-based therapy of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNA:

microRNA

BCL-2:

B cell leukemia-2

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptional PCR

CLL:

Chronic lymphatic leukemia

RISC:

RNA-induced silencing complex

PBS:

Phosphate balanced solution

NC:

Negative control

ATM:

Ataxia-telangiectasia mutated gene

rpm:

Revolutions per minute

bp:

Base pair

OD:

Optical density

ddH2O:

Double distilled water

cDNA:

Complementary deoxyribonucleic acid

pre-miRNA:

Precursor of miRNA

pri-miRNA:

Precursor of pre- miRNA

3′UTR:

3′-untranslated region

DEPC:

Dithylpyrocarbonate

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LNA:

Locked nucleic acid

DMSO:

Dimethyl sulphoxide

PLB:

Passive lysis buffer

BCA:

Bicinchoninic acid

SDS:

Sodium dodecyl sulfate

SNP:

Single nucleotide polymorphism

TBST:

Triethanolamine buffere saline solution with Tween-20

EDTA:

Ethylene diamine tetraacetic acid

MTS:

3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

PI:

Propidium iodide

References

  1. Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150

    Article  PubMed  Google Scholar 

  2. Tamura G (2006) Alterations of tumour suppressor and tumour-related genes in the development and progression of gastric cancer. World J Gastroenterol 12(2):192–198

    PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  4. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  PubMed  CAS  Google Scholar 

  5. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14(11):1271–1277

    Article  PubMed  CAS  Google Scholar 

  7. Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosisin gastric cancer. Cancer Cell 13(3):272–286

    Article  PubMed  CAS  Google Scholar 

  8. Kim YK, Yu J, Han TS et al (2009) Functional links between clustered microRNAs: suppression of cell-cycleinhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res 37(5):1672–1681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastriccancer: a microRNA expression analysis. Lancet Oncol 11(2):136–146

    Article  PubMed  CAS  Google Scholar 

  10. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science (80-) 303(5654):83–86

    Article  CAS  Google Scholar 

  11. Li QJ, Chau J, Ebert PJ et al (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129(1):147–161

    Article  PubMed  CAS  Google Scholar 

  12. Neilson JR, Zheng GX, Burge CB, Sharp PA (2007) Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 21(5):578–589

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Kazenwadel J, Michael MZ, Harvey NL (2010) Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116(13):2395–2401

    Article  PubMed  CAS  Google Scholar 

  14. Naguibneva I, Ameyar-Zazoua M, Polesskaya A et al (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalianmyoblast differentiation. Nat Cell Biol 8(3):278–284

    Article  PubMed  CAS  Google Scholar 

  15. Marcucci G, Radmacher MD, Maharry K et al (2008) MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1919–1928

    Article  PubMed  CAS  Google Scholar 

  16. Pallasch CP, Patz M, Park YJ et al (2009) miRNA deregulation by epigenetic silencing disrupts suppression of the oncogenePLAG1 in chronic lymphocytic leukemia. Blood 114(15):3255–3264

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Pichiorri F, Suh SS, Ladetto M et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci U S A 105(35):12885–12890

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Wang Y, Yu Y, Tsuyada A et al (2011) Transforming growth factor-beta regulates the sphere-initiating stem cell-likefeature in breast cancer through miRNA-181 and ATM. Oncogene 30(12):1470–1480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Ji J, Yamashita T, Budhu A et al (2009) Identification of microRNA-181 by genome-wide screening as a critical player inEpCAM-positive hepatic cancer stem cells. Hepatology 50(2):472–480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Bhattacharya SD, Garrison J, Guo H et al (2010) Micro-RNA-181a regulates osteopontin-dependent metastatic function inhepatocellular cancer cell lines. Surgery 148(2):291–297

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yao Y, Suo AL, Li ZF et al (2009) MicroRNA profiling of human gastric cancer. Mol Med Report 2(6):963–970

    CAS  Google Scholar 

  22. Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for ATM in ionizing radiation-induced cell death in the developingcentral nervous system. Science (80-) 280(5366):1089–1091

    Article  CAS  Google Scholar 

  23. Derheimer FA, Kastan MB (2010) Multiple roles of ATM in monitoring and maintaining DNA integrity. FEBS Lett 584(17):3675–3681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97(11):813–822

    Article  PubMed  CAS  Google Scholar 

  25. Mandriota SJ, Buser R, Lesne L et al (2010) Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary glandepithelial cells. J Biol Chem 285(17):13092–13106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Kang B, Guo RF, Tan XH, Zhao M, Tang ZB, Lu YY (2008) Expression status of ataxia-telangiectasia-mutated gene correlated with prognosisin advanced gastric cancer. Mutat Res 638(1–2):17–25

    Article  PubMed  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  28. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    Article  PubMed  CAS  Google Scholar 

  29. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500

    Article  PubMed  CAS  Google Scholar 

  30. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  PubMed  CAS  Google Scholar 

  32. Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44(6):556–561

    Article  PubMed  CAS  Google Scholar 

  33. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843

    Article  PubMed  Google Scholar 

  34. Tchernitsa O, Kasajima A, Schafer R et al (2010) Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 222(3):310–319

    Article  PubMed  Google Scholar 

  35. Ciafre SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    Article  PubMed  CAS  Google Scholar 

  36. Gao W, Yu Y, Cao H et al (2010) Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lungcancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 64(6):399–408

    Article  PubMed  CAS  Google Scholar 

  37. Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011) miR-181a shows tumour suppressive effect against oral squamous cell carcinomacells by downregulating K-ras. Biochem Biophys Res Commun 404(4):896–902

    Article  PubMed  CAS  Google Scholar 

  38. Jazdzewski K, Boguslawska J, Jendrzejewski J et al (2011) Thyroid hormone receptor beta (THRB) is a major target gene for microRNAsderegulated in papillary thyroid carcinoma (PTC). J Clin Endocrinol Metab 96(3):E546–E553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Noh H, Hong S, Dong Z, Pan ZK, Jing Q, Huang S (2011) Impaired microRNA processing facilitates breast cancer cell invasion by up regulating urokinase-type plasminogen activator expression. Genes Cancer 2(2):140–150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Toller IM, Neelsen KJ, Steger M et al (2011) Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strandbreaks and a DNA damage response in its host cells. Proc Natl Acad Sci U S A 108(36):14944–14949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Zhu KQ, Zhang SJ (2003) Involvement of ATM/ATR-p38 MAPK cascade in MNNG induced G1-S arrest. World J Gastroenterol 9(9):2073–2077

    PubMed  CAS  Google Scholar 

  42. Lavin MF, Kozlov S (2007) ATM activation and DNA damage response. Cell Cycle 6(8):931–942

    Article  PubMed  CAS  Google Scholar 

  43. Bartkova J, Bakkenist CJ, Rajpert-De ME et al (2005) ATM activation in normal human tissues and testicular cancer. Cell Cycle 4(6):838–845

    Article  PubMed  CAS  Google Scholar 

  44. Song SY, Kang MR, Yoo NJ, Lee SH (2010) Mutational analysis of mononucleotide repeats in dual specificity tyrosinephosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS 118(5):389–393

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the grant from Health bureau of Guangzhou City (NO.201102A212011) and by grant from the Natural Science Foundation of Guangdong Province (NO.10151006001000016)

Competing Interests Statement

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Nie, Y., Li, X. et al. MicroRNA-181a Functions as an Oncomir in Gastric Cancer by Targeting the Tumour Suppressor Gene ATM. Pathol. Oncol. Res. 20, 381–389 (2014). https://doi.org/10.1007/s12253-013-9707-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9707-0

Keywords

Navigation