Skip to main content
Log in

Secure and low PAPR OFDM system using TCCM

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Rapid communication uses orthogonal frequency division multiplexing (OFDM) to transfer multimedia data. OFDM combats frequency-selective fading and increases bandwidth efficiency. With many subcarriers, OFDM suffers from an elevated peak-to-average power ratio (PAPR), which hinders the potential of OFDM. The nonlinearity in the transmitted waveform is the result of high PAPR. This study implements compressed sensing (CS) to reduce PAPR because the OFDM signal is sparse in its frequency domain. Thus, the transmitter multiplies a well-designed topologically conjugate chaotic circulant matrix (TCCM), and the receiver end uses orthogonal matching pursuit (OMP). The TCCM involves a considerable selection of topologically conjugate chaotic functions. Chaotic matrices are preferred because they provide secure data transmission, and any minor change in the chaotic parameters results in irrecoverable data. The suggested chaotic system is validated using the bifurcation diagram (BD), Lyapunov exponent (LE), etc. This structured matrix reduces the PAPR considerably from 13 dB to below 7.5 dB, and its evaluation metric is the CCDF (complementary cumulative distribution function). Also, the investigation of the OFDM system involves image transmission, and the comparison is completed with a Gaussian matrix (GM), producing an improved peak-signal-to-noise ratio (PSNR) and bit error rate (BER) with reduced PAPR. This technique secures the data and reduces the PAPR, making it suitable for all future networks including cognitive and 5G networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wunder G, Fischer RFH, Boche H, Litsyn S, No J-S (2013) The PAPR problem in OFDM transmission : new directions for a long-lasting problem. IEEE Signal Proc Mag 30(6):130–144. https://doi.org/10.1109/MSP.2012.2218138

    Article  Google Scholar 

  2. Bulusu K, Shaiek H, Roviras D, Zayani R, Renfors M, Anttila L, Abdelaziz M (2017) Power amplifier effects and peak-to-average power mitigation. In: Orthogonal waveforms and filter banks for future communication systems, Elsevier, pp 461–489

  3. Nasri A, Estebsari M, Toofan S, Piacibello A, Pirola M, Camarchia V, Ramella C (2021) Design of a wideband doherty power amplifier with high efficiency for 5G application. Electronics 10(8):873. https://doi.org/10.3390/electronics10080873

    Article  Google Scholar 

  4. Asplund H, Astely D, von Butovitsch P, Chapman T, Frenne M, Ghasemzadeh F, Hagström M, Hogan B, Jongren G, Karlsson J et al (2020) Advanced antenna systems for 5G network deployments : bridging the gap between theory and practice. Academic Press

  5. Liu B, Liu S, Rui Y, Gui L, Wang Y (2014) A low-complexity compressive sensing algorithm for PAPR reduction. Wirel Pers Commun 78(1):283–295. https://doi.org/10.1007/s11277-014-1753-8

    Article  Google Scholar 

  6. Sarowa S, Kumar N, Agrawal S, Sohi BS (2020) Evolution of PAPR reduction techniques : a wavelet based OFDM approach. Wirel Pers Commun 115(2):1565–1588. https://doi.org/10.1007/s11277-020-07643-1

    Article  Google Scholar 

  7. Mohammed US, Hamada HA (2010) Image transmission over OFDM channel with rate allocation scheme and minimum peak-to-average power ratio arXiv:1006.0840. https://doi.org/10.48550/arXiv.1006.0840

  8. Yao Y, Hu J, Ma S (2013) A PAPR reduction scheme with residue number system for OFDM. EURASIP J Wirel Commun Netw 2013(1):1–11. https://doi.org/10.1186/1687-1499-2013-156

    Article  Google Scholar 

  9. Joshi HD, Saxena R (2011) PAPR reduction in OFDM systems using precoding with clipping. In: 2011 international conference on communications, computing and control applications (CCCA), IEEE, pp 1–5. https://doi.org/10.1109/CCCA.2011.6031203

  10. Zaki AI, Hendy AA, Badawi WK, Badran EF (2019) Joint PAPR reduction and sidelobe suppression in NC-OFDM based cognitive radio using wavelet packet and sc techniques. Phys Commun 35:100695. https://doi.org/10.1016/j.phycom.2019.04.009

    Article  Google Scholar 

  11. Wang Z et al (2011) Combined DCT and companding for PAPR reduction in OFDM signals. J Signal Inf Process 2(2):100–104. https://doi.org/10.4236/jsip.2011.22013

    Article  Google Scholar 

  12. Al-Safadi EB, Al-Naffouri TY (2009) On reducing the complexity of tone-reservation based PAPR reduction schemes by compressive sensing. In: GLOBECOM 2009-2009 IEEE global telecommunications conference, IEEE, pp 1–6. https://doi.org/10.1109/GLOCOM.2009.5425904

  13. Azarnia G, Sharifi AA, Emami H (2020) Compressive sensing based PAPR reduction in OFDM systems : modified orthogonal matching pursuit approach. Ict Express 6 (4):368–371. https://doi.org/10.1016/j.icte.2020.07.004

    Article  Google Scholar 

  14. Zhang T, Qiao S, Zhong F, Guo SX (2017) Gaussian matrix based PAPR reduction scheme for DCO-OFDM systems. Optik 145:513–518. https://doi.org/10.1016/j.ijleo.2017.07.067

    Article  Google Scholar 

  15. Wu J, Ma X, Yin Y, Babar Z (2017) A novel algorithm to mitigate the effect of clipping in orthogonal frequency division multiplexing underwater communication acoustic sensor system. Int J Distrib Sens Networks 13(3):155014771769847. https://doi.org/10.1177/1550147717698472

    Article  Google Scholar 

  16. Kim K-H, Park H, No J-S, Chung H, Shin D-J (2014) Clipping noise cancelation for OFDM systems using reliable observations based on compressed sensing. IEEE Trans Broadcast 61(1):111–118. https://doi.org/10.1109/TBC.2014.2374222

    Article  Google Scholar 

  17. Freag H, Hassan ES, El-Dolil SA, Dessouky MI (2018) PAPR reduction for OFDM-based visible light communication systems using proposed hybrid technique. Int J Commun Syst 31(10):e3582. https://doi.org/10.1002/dac.3582

    Article  Google Scholar 

  18. Wang Z, Wang Z, Chen S (2019) Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic dft precoding. Opt Commun 431:229–237. https://doi.org/10.1016/j.optcom.2018.09.045

    Article  Google Scholar 

  19. Mohammed NA, Elnabawy MM, Khalaf Ashraf AM (2021) PAPR reduction using a combination between precoding and non-liner companding techniques for ACO-OFDM-based VLC systems. Opto-Electron Rev, pp 59–70, https://doi.org/10.24425/opelre.2021.135829

  20. Wang Z, Chen S et al (2014a) Reduction PAPR of OFDM signals by combining grouped DCT precoding with PTS. J Signal Inf Process 5(04):135. https://doi.org/10.4236/jsip.2014.54016

    Article  Google Scholar 

  21. Wang Z, Chen S (2016a) A chaos-based encryption scheme for DCT precoded OFDM-based visible light communication systems. J Electr Comput Eng, 2016. https://doi.org/10.1155/2016/2326563

  22. Wang Z-P, Chen S-F, Zhou Y, Chen M, Tang J, Chen L (2014b) Combining discrete cosine transform with clipping for PAPR reduction in intensity-modulated OFDM systems. Optoelectron Lett 10(5):356–359. https://doi.org/10.1007/s11801-014-4121-8

    Article  Google Scholar 

  23. Wang Z, Chen F, Qiu W, Chen S, Ren D (2018) A two layer chaotic encryption scheme of secure image transmission for DCT precoded OFDM-VLC transmission. Opt Commun 410:94–101. https://doi.org/10.1016/j.optcom.2017.09.095

    Article  Google Scholar 

  24. Wang Z, Chen S (2016b) Combined peak-to-average power ratio reduction and physical layer security enhancement in optical orthogonal frequency division multiplexing visible-light communication systems. Opt Eng 55(7):076110. https://doi.org/10.1117/1.OE.55.7.076110

    Article  Google Scholar 

  25. Wang Z, Chen S (2015) Combined discrete fourier transform precoding and clipping using direct detection optical OFDM. Opt Commun 347:147–154. https://doi.org/10.1016/j.optcom.2015.03.005

    Article  Google Scholar 

  26. Abdullah MK, Ibada AJ (2019) PAPR reduction and data security improvement for OFDM technique using chaos system. J Commun Softw Syst 15(4):293–300. https://doi.org/10.24138/jcomss.v15i4.764

    Article  Google Scholar 

  27. Lu X, Shi Y, Li W, Lei J, Pan Z (2019) A joint physical layer encryption and PAPR reduction scheme based on polar codes and chaotic sequences in OFDM system. IEEE Access 7:73036–73045. https://doi.org/10.1109/ACCESS.2019.2919598

    Article  Google Scholar 

  28. Zhang W, Zhang C, Chen C (2016) Chaos based IQ encryption for PAPR reduction and security enhancement in OFDMA PON system. Procedia Eng 140:30–35. https://doi.org/10.1016/j.proeng.2015.09.234

    Article  Google Scholar 

  29. Arjoune Y, Kaabouch N, Ghazi H. E, Tamtaoui A (2018) A performance comparison of measurement matrices in compressive sensing. Int J Commun Syst 31(10):e3576. https://doi.org/10.1002/dac.3576

    Article  Google Scholar 

  30. Gan H, Xiao S, Zhao Y (2018) A large class of chaotic sensing matrices for compressed sensing. Signal Process 149:193–203. https://doi.org/10.1016/j.sigpro.2018.03.014

    Article  Google Scholar 

  31. Hua Z, Zhou B, Zhou Y (2018) Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans Ind Electron 66(2):1273–1284. https://doi.org/10.1109/TIE.2018.2833049

    Article  Google Scholar 

  32. Belazi A, El-Latif AAA, Belghith S (2016) A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process 128:155–170. https://doi.org/10.1016/j.sigpro.2016.03.021

    Article  Google Scholar 

  33. Zhou Y, Bao L, Chen CLP (2014a) A new 1D chaotic system for image encryption. Signal Process 97:172–182. https://doi.org/10.1016/j.sigpro.2013.10.034

    Article  Google Scholar 

  34. Delgado-Bonal A, Marshak A (2019) Approximate entropy and sample entropy : a comprehensive tutorial. Entropy 21(6):541. https://doi.org/10.3390/e21060541

    Article  MathSciNet  Google Scholar 

  35. Hua Z, Zhou Y (2016) Nonlinear chaotic processing model arXiv:1612.05154. https://doi.org/10.48550/arXiv.1612.05154

  36. Zhou N, Zhang A, Zheng F, Gong L (2014b) Novel image compression–encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt Laser Technol 62:152–160. https://doi.org/10.1016/j.optlastec.2014.02.015

    Article  Google Scholar 

  37. Do TT, Gan L, Nguyen NH, Tran TD (2011) Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process 60(1):139–154. https://doi.org/10.48550/arXiv.1106.5037

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang X, Hajomer AAE, Hu W. (2017) Physical-layer encryption using digital chaos for secure OFDM transmission. Opt Fiber Wirel Commun. https://doi.org/10.5772/intechopen.68238

  39. Candes EJ (2008) The restricted isometry property and its implications for compressed sensing. CR Math 346(9-10):589–592. https://doi.org/10.1016/j.crma.2008.03.014

    Article  MathSciNet  MATH  Google Scholar 

  40. Pilastri AL, Tavares JMRS (2016) Reconstruction algorithms in compressive sensing : an overview. In: 11th edition of the doctoral symposium in informatics engineering (DSIE-16). https://doi.org/10.1109/ICACCM50413.2020.9212838

  41. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666. https://doi.org/10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou Y, Hua Z, Pun C-M, Chen CLP (2014c) Cascade chaotic system with applications. IEEE Trans Cybern 45(9):2001–2012. https://doi.org/10.1109/TCYB.2014.2363168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jemimah J P P.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S Miruna Joe Amali contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

J P P, J., Amali, S.M.J. Secure and low PAPR OFDM system using TCCM. Ann. Telecommun. 78, 459–474 (2023). https://doi.org/10.1007/s12243-023-00948-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-023-00948-9

Keywords

Navigation