Skip to main content

Advertisement

Log in

Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Compared to other terrestrial environments, coastal “blue carbon” habitats such as salt marshes and mangrove forests sequester disproportionately large amounts of carbon as standing plant biomass and peat deposits. This study quantified organic carbon stocks in 16 salt marshes, salt barrens, and mangrove forests in Tampa Bay, Florida, USA. The sites included natural, restored, and created wetlands of varying ages and degrees of anthropogenic impacts. Peat deposits were generally less than 30-cm deep and organic content rapidly decreased with depth in all habitats. The top 15 cm of mangrove soil contained an average of 11.0% organic carbon by weight, salt marshes contained 6.6%, and salt barrens contained 1.0%. Total organic carbon stock in mangroves was 133.6 ± 12.8 Mg ha−1, with 69.5% of that carbon stored belowground. Salt marshes contained 66.4 ± 25.0 Mg ha−1 (93.5% belowground carbon), and salt barrens contained 26.6 ± 8.3 Mg ha−1 (96.1% belowground carbon). These values were much lower than global averages for carbon stocks in mangroves and salt marshes, likely due to Tampa Bay’s location near the northern limit of mangrove habitat, sandy soil, young age of the restored wetlands, presence of mosquito ditches, and recent habitat conversion from salt marshes to mangroves. In the late 1800s, Tampa Bay’s coastal wetlands were dominated by salt marshes, but today they are dominated by mangroves. Based on the blue carbon values from the natural sites in this study, this habitat switching has led to the additional sequestration of 141,000 Mg of carbon in remaining wetlands in the Tampa Bay watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adame, M.F., and B. Fry. 2016. Source and stability of soil carbon in mangrove and freshwater wetlands of the Mexican Pacific coast. Wetlands Ecology and Management 24 (2): 129–137. https://doi.org/10.1007/s11273-015-9475-6.

    Article  CAS  Google Scholar 

  • Adame, M.F., J.B. Kauffman, I. Medina, J.N. Gamboa, O. Torres, J.P. Caamal, M. Reza, and J.A. Herrara-Silveira. 2013. Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One 8 (2): e56569. https://doi.org/10.1371/journal.pone.0056569.

    Article  CAS  Google Scholar 

  • Alongi, D.M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6 (1): 195–219. https://doi.org/10.1146/annurev-marine-010213-135020.

    Article  Google Scholar 

  • Ball, D.F. 1964. Loss-on-ignition as estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science 15 (1): 84–92. https://doi.org/10.1111/j.1365-2389.1964.tb00247.x.

    Article  CAS  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193. https://doi.org/10.1890/10-1510.1.

    Article  Google Scholar 

  • Bouillon, S., and R.M. Connolly. 2009. Carbon exchange among tropical coastal ecosystems. In Ecological connectivity among tropical coastal ecosystems, ed. I. Nagelkerken, 45–70. Heidelberg: Springer Verlag GmbH. https://doi.org/10.1007/978-90-481-2406-0_3.

    Chapter  Google Scholar 

  • Bouillon, S., A.V. Borges, E. Casteñeda-Moya, et al. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles 22: GB2013.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, T.J. Smith III, and C.J. Sanders. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research: Biogeosciences 119: 2032–2048.

    CAS  Google Scholar 

  • Brooks, G.R., and L.J. Doyle. 1998. Recent sedimentary development of Tampa Bay, Florida: A microtidal estuary incised into tertiary platform carbonates. Estuaries 21 (3): 391–406. https://doi.org/10.2307/1352838.

    Article  Google Scholar 

  • Callaway, J.C., R.D. DeLaune, and W.H. Patrick. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Cavanaugh, K.C., J.R. Kellner, A.J. Forde, D.S. Gruner, J.D. Parker, W. Rodriguez, and I.C. Feller. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111 (2): 723–727. https://doi.org/10.1073/pnas.1315800111.

    Article  CAS  Google Scholar 

  • Cebrian, J., and C.M. Duarte. 1995. Plant growth-rate dependence of detrital carbon storage in ecosystems. Science 268 (5217): 1606–1608. https://doi.org/10.1126/science.268.5217.1606.

    Article  CAS  Google Scholar 

  • Chambers, L.G., S.E. Davis, T. Troxler, J.N. Boyer, A. Downey-Wall, and L.J. Scinto. 2014. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 726 (1): 195–211. https://doi.org/10.1007/s10750-013-1764-6.

    Article  CAS  Google Scholar 

  • Chmura, G.L., S.C. Anisfeld, D.R. Cahoon, and J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17 (22): 1–12.

    Google Scholar 

  • Choi, Y., Y. Wang, Y.P. Hsieh, and L. Robinson. 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes. Global Biogeochemical Cycles 15 (2): 311–319. https://doi.org/10.1029/2000GB001308.

    Article  CAS  Google Scholar 

  • Craft, C.B., E.D. Seneca, and S.W. Broome. 1991. Loss on ignition and Kjeldahl digestion for estimating organic-carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion. Estuaries 14 (2): 175–179. https://doi.org/10.2307/1351691.

    Article  CAS  Google Scholar 

  • Craft, C., J. Reader, J.N. Sacco, and S.W. Broome. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9 (4): 1405–1419. https://doi.org/10.1890/1051-0761(1999)009[1405:TFYOED]2.0.CO;2.

    Article  Google Scholar 

  • Craft, C., P. Megonigal, S. Broome, J. Stevenson, R. Freese, J. Cornell, L. Zheng, and J. Sacco. 2003. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecological Applications 13 (5): 1417–1432. https://doi.org/10.1890/02-5086.

    Article  Google Scholar 

  • Dean, W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods. Journal of Sedimentary Petrology 44: 242–248.

    CAS  Google Scholar 

  • Donato, D.C., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4 (5): 293–297. https://doi.org/10.1038/ngeo1123.

    Article  CAS  Google Scholar 

  • Doughty, C.L., J.A. Langley, W.S. Walker, I.C. Feller, R. Schaub, and S.K. Chapman. 2015. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39: 385–396.

    Article  CAS  Google Scholar 

  • Duarte, C.M., and J. Cebrian. 1996. The fate of marine autotrophic production. Limnology and Oceanography 41 (8): 1758–1766. https://doi.org/10.4319/lo.1996.41.8.1758.

    Article  CAS  Google Scholar 

  • Duarte, C.M., J.J. Middelburg, and N. Caraco. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2 (1): 1–8. https://doi.org/10.5194/bg-2-1-2005.

    Article  CAS  Google Scholar 

  • Ellison, J.C., and D.R. Stoddart. 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogs and implications. Journal of Coastal Research 7: 151–165.

    Google Scholar 

  • Elsey-Quirk, T., D.M. Seliskar, C.K. Sommerfield, and J.L. Gallagher. 2011. Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: Sea level rise implications. Wetlands 31 (1): 87–99. https://doi.org/10.1007/s13157-010-0139-2.

    Article  Google Scholar 

  • Ewe, S.M.L., E.E. Gaiser, D.L. Childers, D. Iwaniec, V.H. Rivera-Monroy, and R.R. Twilley. 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569 (1): 459–474. https://doi.org/10.1007/s10750-006-0149-5.

    Article  Google Scholar 

  • Gerlach, M.J., S.E. Engelhart, A.C. Kemp, R.P. Moyer, J.M. Smoak, C.E. Bernhardt, and N. Cahill. 2017. Reconstructing common era relative sea-level change on the Gulf Coast of Florida. Marine Geology 390: 254–269. https://doi.org/10.1016/j.margeo.2017.07.001.

    Article  CAS  Google Scholar 

  • Gonneea, M.E., A. Paytan, and J.A. Herrera-Silveira. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science 61 (2): 211–227. https://doi.org/10.1016/j.ecss.2004.04.015.

    Article  CAS  Google Scholar 

  • Gonzalez Trilla, G., M.M. Borro, N.S. Morandeira, F. Schivo, P. Kandus, and J. Marcovecchio. 2013. Allometric scaling of dry weight and leaf area for Spartina densiflora and Spartina alterniflora in two southwest Atlantic saltmarshes. Journal of Coastal Research 29: 1373–1381.

    Article  Google Scholar 

  • Gross, M.F., M.A. Hardisky, P.L. Wolf, and V. Klemas. 1991. Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries 14 (2): 180–191. https://doi.org/10.2307/1351692.

    Article  Google Scholar 

  • Henry, K.M., and R.R. Twilley. 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt marsh to mangrove. Journal of Coastal Research 29: 1273–1283.

    Article  Google Scholar 

  • Howard, J., S. Hoyt, K. Isensee, E. Pidgeon, and M. Telszewski, eds. 2014. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Arlington: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

    Google Scholar 

  • Jerath, M., M. Bhat, V.H. Rivera-Monroy, E. Castañeda-Moya, M. Simard, and R.R. Twilley. 2016. The role of economic, policy, and ecological factors in estimating the value of carbon stocks in Everglades mangrove forests, South Florida, USA. Environmental Science and Policy 66: 160–169. https://doi.org/10.1016/j.envsci.2016.09.005.

    Article  CAS  Google Scholar 

  • Kauffman, J.B., and T.G. Cole. 2010. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30 (6): 1077–1084. https://doi.org/10.1007/s13157-010-0114-y.

    Article  Google Scholar 

  • Kauffman, J.B., and D.C. Donato. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working paper 86. Bogor: Center for International Forestry Research.

    Google Scholar 

  • Kauffman, J.B., C. Heider, T.G. Cole, K.A. Dwire, and D.C. Donato. 2011. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31 (2): 343–352. https://doi.org/10.1007/s13157-011-0148-9.

    Article  Google Scholar 

  • Komiyama, A., S. Poungparn, and S. Kato. 2005. Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21 (04): 471–477. https://doi.org/10.1017/S0266467405002476.

    Article  Google Scholar 

  • Krauss, K.W., A.S. From, T.W. Doyle, T.J. Doyle, and M.J. Barry. 2011. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. Journal of Coastal Conservation 15 (4): 629–638. https://doi.org/10.1007/s11852-011-0153-4.

    Article  Google Scholar 

  • Kruczynski, W.L., C.B. Subrahmanyam, and S.H. Drake. 1978. Studies on the Plant Community of a North Florida Salt Marsh Part I. Primary Production. Bulletin of Marine Science 28: 316–334.

    Google Scholar 

  • Lunstrum, A., and L.Z. Chen. 2014. Soil carbon stocks and accumulation in young mangrove forests. Soil Biology and Biochemistry 75: 223–232. https://doi.org/10.1016/j.soilbio.2014.04.008.

    Article  CAS  Google Scholar 

  • Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9 (10): 552–560. https://doi.org/10.1890/110004.

    Article  Google Scholar 

  • Middleton, B.A., and K.L. McKee. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology 89 (5): 818–828. https://doi.org/10.1046/j.0022-0477.2001.00602.x.

    Article  Google Scholar 

  • Morrisey, D.J., A. Swales, S. Dittmann, M.A. Morrison, C.E. Lovelock, and C.M. Beard. 2010. The ecology and management of temperate mangroves. In Oceanography and marine biology: An annual review, ed. R.N. Gibson, R.J.A. Atkinson, and J.D.M. Gordon, vol. 48, 43–160. Boca Raton: CRC Press-Taylor & Francis Group. https://doi.org/10.1201/EBK1439821169-c2.

    Chapter  Google Scholar 

  • Moyer, R.P., K.R. Radabaugh, C.E. Powell, I. Bociu, A.R. Chappel, B.C. Clark, S. Crooks, and S. Emmett-Mattox. 2016. Quantifying carbon stocks for natural and restored mangroves, salt marshes and salt barrens in Tampa Bay. Appendix C in: Tampa Bay blue carbon assessment: Summary of findings, 119–158 www.estuaries.org/images/Blue_Carbon/Tampa-Bay-Blue-Carbon-Assessment-Report-final_June2016.pdf

  • Nellemann, C., E. Corcoran, C.M. Durate, L. Valdes, C. DeYoung, L. Fonseca, and G. Grimditch. 2009. Blue carbon: The role of healthy oceans in binding carbon. New York: United Nations Environment Programme, GRID-Arendal. United Nations Environmental Program.

    Google Scholar 

  • NOAA. 2016. NOAA Historical Surveys (T-Sheets). shoreline.noaa.gov/data/datasheets/t-sheets.html. Accessed 21 September 2017.

  • Orson, R.A., R.S. Warren, and W.A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10 (1): 20–27. https://doi.org/10.2307/1352021.

    Article  Google Scholar 

  • Osland, M.J., A.C. Spivak, J.A. Nestlerode, J.M. Lessmann, A.E. Almario, P.T. Heitmuller, M.J. Russell, K.W. Krauss, F. Alvarez, D.D. Dantin, J.E. Harvey, A.S. From, N. Cormier, and C.L. Stagg. 2012. Ecosystem development after mangrove wetland creation: Plant-soil change across a 20-year chronosequence. Ecosystems 15 (5): 848–866. https://doi.org/10.1007/s10021-012-9551-1.

    Article  CAS  Google Scholar 

  • Perry, C.L., and I.A. Mendelssohn. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29 (1): 396–406. https://doi.org/10.1672/08-100.1.

    Article  Google Scholar 

  • Pool, D.J., S.C. Snedaker, and A.E. Lugo. 1977. Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica 9 (3): 195–212. https://doi.org/10.2307/2387881.

    Article  Google Scholar 

  • Raabe, E.A., L.C. Roy, and C.C. McIvor. 2012. Tampa Bay coastal wetlands: Nineteenth to twentieth century tidal marsh-to-mangrove conversion. Estuaries and Coasts 35 (5): 1145–1162. https://doi.org/10.1007/s12237-012-9503-1.

    Article  CAS  Google Scholar 

  • Radabaugh, K.R., C.E. Powell, I. Bociu, B.C. Clark, and R.P. Moyer. 2017. Plant size metrics and organic carbon content of Florida salt marsh vegetation. Wetlands Ecology and Management 25 (4): 443–455. https://doi.org/10.1007/s11273-016-9527-6.

    Article  CAS  Google Scholar 

  • Roner, M., A. D'Alpaos, M. Ghinassi, M. Marani, S. Silvestri, E. Franceschinis, and N. Realdon. 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy. Advances in Water Resources 93: 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011.

    Article  CAS  Google Scholar 

  • Ross, M.S., P.L. Ruiz, G.J. Telesnicki, and J.F. Meeder. 2001. Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA). Wetlands Ecology and Management 9 (1): 27–37. https://doi.org/10.1023/A:1008411103288.

    Article  Google Scholar 

  • Saintilan, N. 1997. Mangroves as successional stages on the Hawkesbury River. Wetlands Australia Journal 16: 99–107.

    Google Scholar 

  • Saintilan, N., K. Rogers, D. Mazumder, and C. Woodroffe. 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science 128: 84–92. https://doi.org/10.1016/j.ecss.2013.05.010.

    Article  CAS  Google Scholar 

  • Sanders, C.J., B.D. Eyre, I.R. Santos, W. MacHado, W. Luiz-Silva, J.M. Smoak, J.L. Breithaupt, M.E. Ketterer, L. Sanders, H. Marotta, and E. Silva-Filho. 2014. Elevated rates of organic carbon, nitrogen, and phosphorous accumulation in a highly impacted mangrove wetland. Geophysical Research Letters 41 (7): 2475–2480. https://doi.org/10.1002/2014GL059789.

    Article  CAS  Google Scholar 

  • Sanders, C.J., D.T. Maher, D.R. Tait, D. Williams, C. Holloway, J.Z. Sippo, and I.R. Santos. 2016. Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research: Biogeosciences 121: 2600–2609.

    Google Scholar 

  • Sherwood, E.T., and H.S. Greening. 2014. Potential impacts and management implications of climate change on Tampa Bay estuary critical coastal habitats. Environmental Management 53 (2): 401–415. https://doi.org/10.1007/s00267-013-0179-5.

    Article  Google Scholar 

  • Simpson, L.T., T.Z. Osborne, L.J. Duckett, and I.C. Feller. 2017. Carbon storages along a climate induced coastal wetland gradient. Wetlands. https://doi.org/10.1007/s13157-017-0937-x.

  • Smith, T.J., III, and K.R. Whelan. 2006. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration. Wetlands Ecology and Management 14 (5): 409–419. https://doi.org/10.1007/s11273-005-6243-z.

    Article  Google Scholar 

  • Smith, T.J., III, G. Tiling, and P.S. Leasure. 2007. Restoring coastal wetlands that were ditched for mosquito control: A preliminary assessment of hydro-leveling as a restoration technique. Journal of Coastal Conservation 11 (1): 67–74. https://doi.org/10.1007/s11852-007-0007-2.

    Article  Google Scholar 

  • Snedaker, S. 1993. Impact on mangroves. In Climatic change in the Intra-Americas Sea, ed. G.A. Maul, 282–305. London: Edward Arnold.

    Google Scholar 

  • Stout, J.P. 1984. Ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: A community profile (no. FWS/OBS-85 (7.1)). Dauphin Island: Marine Environmental Sciences Consortium.

    Google Scholar 

  • SWFWMD (Southwest Florida Water Management District) 2012. Land use/land cover 2011 GIS Shapefile Database. data.swfwmd.opendata.arcgis.com/datasets/f325a3417c92444d9cba838154d6fa0d_11. Accessed 20 September 2016.

  • Ullman, R., V. Bilbao-Bastida, and G. Grimsditch. 2013. Including blue carbon in climate market mechanisms. Ocean & Coastal Management 83: 15–18. https://doi.org/10.1016/j.ocecoaman.2012.02.009.

    Article  Google Scholar 

  • Więski, K., and S.C. Pennings. 2014. Climate drivers of Spartina alterniflora saltmarsh production in Georgia, USA. Ecosystems 17 (3): 473–484. https://doi.org/10.1007/s10021-013-9732-6.

    Article  CAS  Google Scholar 

  • Xia, P., X. Meng, A. Feng, and Y. Zhang. 2015. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: Stable carbon isotopes and mangrove pollen. Organic Geochemistry 85: 32–41. https://doi.org/10.1016/j.orggeochem.2015.04.003.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study served as a component of the Tampa Bay Blue Carbon Assessment. Field efforts and carbon stock calculations were completed by the Florida Fish and Wildlife Conservation Commission. The authors also wish to thank the Southwest Florida Water Management District, FWC’s Stock Enhancement Research Facility, Hillsborough County, Pinellas County, Manatee County, Terra Ceia Aquatic Preserve, Terra Ceia Preserve State Park, Tampa Electric Co., and the Suncoast Youth Conservation Center for providing property access. Field assistance was provided by J Christian, K Guindon, R Lucas, J Polley, J Rhyne, R Rodriguez, R Runnels, J Sneed, and A Wilcox. Elemental analysis of salt marsh samples was performed by E Goddard (University of South Florida, lab of D Hollander); mangrove samples were prepared by J Breithaupt and S Hussain and analyzed by C Sanders (Southern Cross University). We are grateful to S Emmett-Mattox, S Crooks, G Raulerson, E Sherwood, and two anonymous reviewers for their guidance and comments which greatly improved the quality of this study.

Funding

Funding was provided by Restore America’s Estuaries and the Tampa Bay Environmental Restoration Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan P. Moyer.

Additional information

Communicated by Charles T. Roman

Electronic supplementary material

ESM 1

(DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radabaugh, K.R., Moyer, R.P., Chappel, A.R. et al. Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA. Estuaries and Coasts 41, 1496–1510 (2018). https://doi.org/10.1007/s12237-017-0362-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0362-7

Keywords

Navigation