Skip to main content
Log in

Effects of Growth Regulators, Media and Explant Types on Microtuberization of Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Microtubers (MT) are an innovative approach for nuclear seed production in potato (Solanum tuberosum L.). They are produced under in vitro conditions using different protocols. However, content and type of growth media as well as explant types significantly affect the MT production efficiency. This study was conducted to develop an efficient protocol for MT production by evaluating different growth regulators at different concentrations, types of growth media and explants in two separate experiments. In Experiment 1, the effects of six different growth regulators, and their three application rates on MT formation were compared. The effects of two growth media and three explant types on MT production were compared in Experiment 2. As a result, our studies indicated that cotton based liquid MS medium containing 0.1 mg L−1 Thidiazuron, and using whole plants as explant can be used for efficient MT production in potato.

Resumen

Los microtubérculos (MT) son un enfoque innovador para la producción de semilla nuclear en papa (Solanum tuberosum L.). Se producen bajo condiciones in vitro usando diferentes protocolos. No obstante, el contenido y tipo de medio de cultivo, así como los tipos de explantes, afectan significativamente la eficiencia en la producción de microtubérculo. Este estudio se condujo para desarrollar un protocolo eficiente para la producción de MT mediante la evaluación de diferentes reguladores de crecimiento a diferentes concentraciones, tipo de medios de cultivo y explantes en dos experimentos separados. En el experimento 1, se compararon los efectos de seis diferentes reguladores de crecimiento y sus tres niveles de aplicación en la formación de MT. En el experimento 2, se compararon los efectos de dos medios de crecimiento y tres tipos de explante en la producción de microtubérculos. Como resultado, nuestros estudios indicaron que el medio líquido MS con base de algodón con 0.1 mg L-1 de thidiazurón, y usando plantas completas como explante puede usarse para la producción eficiente de microtubérculo en papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anonymous. 2019. FAO Statistical Database, http://www.fao.org/faostat/en/#data. Accessed 16 Dec 2019.

  • Arregui, L.M., J. Veramendi, and A.M. Mingo-Castel. 2003. Effect of gelling agents on in vitro tuberization of six potato cultivars. American Journal of Potato Research 80: 141–144.

    Article  CAS  Google Scholar 

  • Barker, W.G. 1953. A method for the in vitro culturing of potato tubers. Science 118: 384–358.

    Article  CAS  PubMed  Google Scholar 

  • Del Avila, A., S.M. Pereyra, and J.A. Argüello. 1996. Potato micropropagation: Growth of cultivars in solid and liquid media. Potato Research 39: 253–258.

    Article  Google Scholar 

  • Dhital, S.P., and H.T. Lim. 2004. Microtuberization response in several genotypes of potato (Solanum tuberosum L) by direct addition of liquid medium to in vitro plantlets. Journal of Korean Society of Horticultural Science 45: 281–286.

    Google Scholar 

  • Dhital, S.P., and H.T. Lim. 2012. Microtuberization of potato (Solanum tuberosum L) as influenced by supplementary nutrients, plant growth regulators, and in vitro culture conditions. Potato Research 55: 97–108.

    Article  CAS  Google Scholar 

  • Dobranszki, J., K.M. Tabori, and A. Ferenczy. 1999. Light and genotype effects on in vitro tuberization of potato plantlets. Potato Research 42: 483–488.

    Article  Google Scholar 

  • Dobranszki, J., K.M. Tabori, and I. Hudak. 2008. In vitro tuberization in hormone-free systems on solidified medium and dormancy of potato microtubers. Fruit, Vegetable and Cereal Science and Biotechnology 2: 82–94.

    Google Scholar 

  • Donnelly, D.J., W.K. Coleman, and S.E. Coleman. 2003. Potato microtuber production and performance: A review. American Journal of Potato Research 80: 103–115.

    Article  Google Scholar 

  • El-Sawy, A., S. Bekheet, and U.A. Aly. 2007. Morphological and molecular characterization of potato microtubers production on coumarin inducing medium. International Journal of Agriculture and Biology 5: 675–680.

    Google Scholar 

  • Fatima, B., M. Usman, I. Ahmad, and I.A. Khan. 2005. Effect of explant and sucrose on microtuber induction in potato cultivars. International Journal of Agriculture and Biology 1: 63–66.

    Google Scholar 

  • Gopal, J., J.L. Minocha, and J.S. Sidhu. 1997. Comparative performance of potato crops raised from microtubers induced in the dark versus microtubers induced in light. Potato Research 40: 407–412.

    Article  Google Scholar 

  • Gopal, J., L.J. Minocha, and H.S. Dhaliwal. 1998. Microtuberzation in potato (Solanum tuberosum L). Plant Cell Reports 17: 794–798.

    Article  CAS  PubMed  Google Scholar 

  • Gudeva, K.L., F. Trajkova, and I. Stojkova. 2016. The effect of plant growth regulators and sucrose on microtuberization of potato (Solanum tuberosum L.). Romanian Agricultural Research 33: 1–7.

    Google Scholar 

  • Hoque, M.E. 2010. in vitro tuberization in potato (Solanum tuberosum L.). Plant Omics 3 (1): 7–11.

    CAS  Google Scholar 

  • Hossain, M.A., M.A. Kawochar, E.H.M. Abdullah-Al-Mahmud, S. Rahaman, M.A. Hossain, and K. Md. 2015. Standardization of sucrose and 6-benzyl aminopurine for in vitro micro tuberization of potato. American Journal of Agriculture and Forestry 3 (2): 25–30.

    Article  Google Scholar 

  • Jackson, S.D. 1999. Multiple signalling pathways control tuber induction in potato. Plant Physiology 119: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez, E., N. Perez, M.D. Feria, R. Barbon, A. Capote, M. Chavez, E. Quiala, and J.C. Perez. 1999. Improved production of potato microtubers using a temporary immersion system. Plant Cell, Tissue and Organ Culture 59: 19–23.

    Article  Google Scholar 

  • Kefi, S., A.D. Pavlista, P.E. Read, and S.D. Kachman. 2000. Comparison of thidiazuron and two nitroguanidines to kinetin on potato microtuberization in vitro under short and long days. Journal of Plant Growth Regulation 19 (4): 429–436.

    Article  CAS  Google Scholar 

  • Khuri, S., and J. Moorby. 1996. Nodal segments or mictotubers as explants for in vitro microtuber production of potato. Plant Cell, Tissue and Organ Culture 45: 215–222.

    Article  Google Scholar 

  • Koda, Y., and Y. Okazawa. 1983. Influences of environmental, hormonal and nutritional factors on potato tuberization in vitro. Japanese Journal of Crop Science 52 (4): 582–591.

    Article  Google Scholar 

  • Kumlay, A. 2014. Combination of the auxins NAA, IBA and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. BioMed Research International: 1–7.

  • Le, C.L. 1999. In vitro microtuberization: An evaluation of culture conditions for the production of virus-free seed potatoes. Potato Research 42: 489–498.

    Article  Google Scholar 

  • Leclerc, Y., D.J. Donnelly, and W.K. Coleman. 1994a. Microtuber dormancy in three potato cultivars. American Journal of Potato Research 72: 215–223.

    Article  Google Scholar 

  • Leclerc, Y., D.J. Donnelly, and J.E.A. Seabrook. 1994b. Microtuberization of layered shoots and nodal cuttings of potato: The influence of growth regulators and incubation periods. Plant Cell, Tissue and Organ Culture 37: 113–120.

    Article  CAS  Google Scholar 

  • Lentini, Z., and E.D. Earle. 1991. in vitro tuberization of potato clones from different maturity groups. Plant Cell Reports 9: 691–695.

    Article  CAS  PubMed  Google Scholar 

  • Levy, D., J.E.A. Seabrook, and S. Coleman. 1993. Enhancement of tuberization of axlilary shoot buds of potato (Solanum tuberosum L) cultivars cultured in vitro. Journal of Experimental Botany 44: 381–386.

    Article  CAS  Google Scholar 

  • Lian, Y., H. Dong, L. Jin, Y. Ji, H. Lin, Y. Zou, Y. Lian, H.R. Dong, L.P. Jin, B.Y. Ji, H. Lin, and Y. Zou. 1998. Effect of inductive stimulus on the changes of endohormones during microtuber formation in vitro in Solanum tuberosum L. Advances in Horticultural Science 2: 494–498.

    Google Scholar 

  • Mbiyu, M., J. Muthoni, J. Kabira, C. Muchira, P. Pwaipwai, J. Ngaruiya, J. Onditi, and S. Otieno. 2012. Comparing liquid and solid media on the growth of plantlets from three Kenyan potato cultivars. American Journal of Experimental Agriculture 2: 81–89.

    Article  Google Scholar 

  • Naqvi, B., H. Abbas, and H. Ali. 2019. Evaluation of in vitro tuber induction ability of two potato genotypes. Pakistan Journal of Agricultural Sciences 56 (1): 77–81.

    Google Scholar 

  • Nhut, D.T., N.H. Nguyen, and D.T.T. Thuy. 2006. A novel in vitro hydroponic culture system for potato (Solanum tuberosum L) microtuber production. Scientia Horticulturae 110: 230–234.

    Article  CAS  Google Scholar 

  • Peng, M., X. Wang, and L. Li. 2012. The effect of plant growth regulator and active charcoal on the development of microtubers of potatoes. American Journal of Plant Sciences 3: 1535–1540.

    Article  CAS  Google Scholar 

  • Rafique, T., M.J. Jaskani, H. Raza, and M. Abbas. 2004. In vitro studies on microtuber induction in potato. International Journal of Agriculture and Biology 6 (2): 375–377.

    Google Scholar 

  • Ranalli, P. 2007. The canon of potato science: 24. Microtubers. Potato Research 50: 301–304.

    Article  Google Scholar 

  • Ranalli, P., B.G. Ruaro, P. Delre, M. Dicandilo, and G. Mandolina. 1994. Microtuber and minituber production and field performance compared with normal tubers. Potato Research 37: 383–391.

    Article  Google Scholar 

  • Romanov, G.A., N.P. Aksenova, T.N. Konstantinova, S.A. Golyanovskaya, J. Kossman, and L. Willmitzer. 2000. Effect of indole-3-acetic acid and kinetin on tuberization parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regulation 32: 245–251.

    Article  CAS  Google Scholar 

  • Rosell, G., F.G. de Bertoldi, and R. Tizio. 1987. In vitro mass tuberisation as a contribution to potato micropropagation. Potato Research 30: 111–116.

    Article  Google Scholar 

  • Sekhon, S., and M. Singh. 1985. Effect of growth regulators and nitrogen on the growth, number, size and size of seed tubers and yield of potatoes. The Journal of Agricultural Science 104: 99–106.

    Article  CAS  Google Scholar 

  • Simko, I. 1993. Effects of kinetin, paclobutrazol and their interactions on the micro-tuberization of potato stem segments in vitro in the light. Journal of Plant Growth Regulation 12 (1): 23–27.

    Article  CAS  Google Scholar 

  • Struik, P.C. 2007. The canon of potato science: 25. Minitubers. Potato Research 50: 305–308.

    Article  Google Scholar 

  • Struik, P.C., D. Vreugdenhil, H.J. van Eck, C.W. Bachem, and R.G.F. Visser. 1999. Physiological and genetic control of tuber formation. Potato Research 42: 313–331.

    Article  CAS  Google Scholar 

  • Türkmen, A.K., C. Yavuz, S. Das Dangol, C. Tarım, U. Demirel, and M.E. Çalışkan. 2017. Evaluation of microtuberization performances of different genotypes. Turkish Journal of Agriculture - Food Science and Technology 5 (4): 353–357.

    Article  Google Scholar 

  • van Loon, K.D. 2007. The seed potato market. Potato biology and biotechnology, advances and perspectives. Amsterdam: Elsevier Press.

    Google Scholar 

  • Vreugdenhil, D., and P.C. Struik. 1989. An integrated view of the hormonal regulation of tuber formation in potato (Solanum tuberosum). Physiologia Plantarum 75: 525–531.

    Article  CAS  Google Scholar 

  • Xu, X., A.A.M. van Lammeren, E. Vermeer, and D. Vreugdenhil. 1998. The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology 117: 575–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., W. Zhou, and H. Li. 2005. The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization. Acta Physiologiae Plantarum 27: 363–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Niğde Ömer Halisdemir University Research Projects Unit under the Project No: FEB 2015/15 BAGEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayten Kubra Yagiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagiz, A.K., Yavuz, C., Tarim, C. et al. Effects of Growth Regulators, Media and Explant Types on Microtuberization of Potato. Am. J. Potato Res. 97, 523–530 (2020). https://doi.org/10.1007/s12230-020-09801-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-020-09801-4

Keywords

Navigation