Skip to main content
Log in

Evaluation of Mechanical Properties of Composites Made from Recycled Plastic and Waste Rubberwood Using Multiply-Response Surface Optimization as Green Building Materials

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the use of recycled high-density polyethylene (rHDPE) and rubberwood flour (RWS) to manufacture experimental wood-plastic composites (WPCs). The WPC formulations were developed with D-optimal mixture experimental design and analyzed using response surface methodology to determine the mechanical properties of the samples. The experimental data was utilized to carry out analysis of variance (ANOVA) and to create a regression model for the properties of the three factors considered in this study. The findings showed that the mechanical strength and hardness values of composite samples increased with an increasing RWS and rHDPE. Particularly, the nanoclay (NC) in the samples affected positively their hardness, impact strength, and direct screw withdrawal. The results also revealed that the optimum composition for all responses found 54.0 wt% rHDPE, 35.4 wt% RWS, 5.6 wt% NC, 4.0 wt% MAPE, and 1.0 wt% WAX with a desirability score value of 0.969. Based on the findings in this work in comparison of the experimental results and the predicted values of WPC samples had less than 5% difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. I. Kamdar, S. Ali, A. Bennui, K. Techato, W. Jutidamrongphan, Resour. Conserv. Recyc. 149, 220 (2019)

    Google Scholar 

  2. A. Ashori, Polym. Plast. Technol. Eng. 47, 741 (2008)

    CAS  Google Scholar 

  3. Barbulianno, 18 Eco-friendly building materials that help you save energy and the earth. (Thailand, 2020), https://www.barbuliannodesign.com. Accessed 15 May 2022

  4. PCD, Thailand State of Pollution Control Report (2019), https://infofile.pcd.go.th/Waste/Wst2019.pdf. Accessed 15 Apr 2021

  5. P. Heemmuden, Thailand’s rubberwood industry: a new rising star. (Thailand, 2016), https://www.thailand-business-news.com. Accessed 22 May 2022

  6. T. Ratanawilai, K. Taneerat, Constr. Build. Mater. 172, 349 (2018)

    CAS  Google Scholar 

  7. C. Srivabut, T. Ratanawilai, S. Hiziroglu, J. Mater. Cycles. Waste. Manag. 23, 1503 (2021)

    CAS  Google Scholar 

  8. K. Behzad, V. Ali, C. Vahid, J. Reinf. Plast. Compos. 30, 1115 (2016)

    Google Scholar 

  9. M.A.A. Alrubaie, R.A. Lopez-Anido, D.J. Gardner, M. Tajvidi, Y. Han, J. Thermoplast. Compos. Mater. 33, 1248 (2016)

    Google Scholar 

  10. C. Srivabut, C. Homkhiew, S. Rawangwong, W. Boonchouytan, J. Mater. Cycles. Waste. Manag. 24, 1407 (2022)

    CAS  Google Scholar 

  11. L. Yali, Inter J. Polym. Mater. Polym. Bio. 61, 882 (2012)

    Google Scholar 

  12. E. Olakanmi, O. Olatunde, A. Emmanuel, E. Vunain, Polym. Compos. 15, 2657 (2016)

    Google Scholar 

  13. I. Turku, A. Keskisaari, T. Kärki, A. Puurtinen, P. Marttila, Compos. Struct. 161, 469 (2017)

    Google Scholar 

  14. M.P. Iwona, T. Robert, R. Tomasz, K.T. Vijay, Ind. Crop Prod. 92, 149 (2016)

    Google Scholar 

  15. D.M. Panaitescu, C.A. Nicolae, Z. Vuluga, C. Vitelaru, C.G. Sanporean, C. Zaharia, D. Florea, G. Vasilievici, J. Ind. Eng. Chem. 37, 137 (2016)

    CAS  Google Scholar 

  16. D. Friedrich, A. Luible, Constr. Build. Mater. 124, 1142 (2016)

    Google Scholar 

  17. S. Khamtree, T. Ratanawilai, S. Ratanawilai, J. Thermoplast. Compos. Mater. 33, 599 (2020)

    CAS  Google Scholar 

  18. B. Ishagh, M. Mostafa, F. Mohammad, F. Arash, Compos. B. Eng. 56, 163 (2020)

    Google Scholar 

  19. C. Srivabut, T. Ratanawilai, S. Hiziroglu, Constr. Build. Mater. 162, 450 (2018)

    CAS  Google Scholar 

  20. S. Karumuri, S. Hiziroglu, A.K. Kalkan, RSC Adv. 7, 19406 (2017)

    CAS  Google Scholar 

  21. C. Homkhiew, T. Ratanawilai, W. Thongruang, Compos. Part B Eng. 56, 350 (2014)

    CAS  Google Scholar 

  22. I. Spiridon, O.M. Paduraru, M. Rudowski, M. Kozlowski, R.N. Darie, Ind. Eng. Chem. Res. 51, 7279 (2012)

    CAS  Google Scholar 

  23. C. Badji, L. Soccalingame, H. Garay, A. Bergeret, J.C. Bénézet, Polym. Degrad. Stabi. 137, 162 (2017)

    CAS  Google Scholar 

  24. K.B. Sumanth, G.D. Babu, S.S. Kumar, Int. J. Eng. Innov. Technol. 8, 2876 (2019)

    Google Scholar 

  25. C. Homkhiew, C. Srivabut, S. Rawangwong, W. Boonchouytan, Fibers. Polym. 23, 2679 (2022)

    CAS  Google Scholar 

  26. H. Khanjanzadeh, T. Tabarsa, A. Shakeri, J. Reinf. Plast. Compos. 31, 341 (2012)

    CAS  Google Scholar 

  27. R.N. Darie, R. Bodirlau, C.A. Teaca, J. Macyszyn, M. Kozlowski, I. Sporodpn, Int. J. Polym. Anal. Charact. 18, 315 (2013)

    CAS  Google Scholar 

  28. O. Faruk, L.M. Matuana, Compos. Sci. Technol. 68, 2073 (2008)

    CAS  Google Scholar 

  29. R. Jeyakumar, P.S. Sampath, R. Ramamoorthi, T. Ramakrishnan, Int. J. Adv. Manuf. Technol. 93, 527 (2017)

    Google Scholar 

  30. K.M.V. Ravi Teja, J. Naveen, K.R.K. Bala, Mater. Today Proc. 4, 3861 (2017)

    Google Scholar 

  31. Y.H. Lee, T. Kuboki, C.B. Park, M. Sain, M. Kontopoulou, J. Appl. Polym. Sci. 118, 452 (2010)

    CAS  Google Scholar 

  32. C. Srivabut, T. Ratanawilai, S. Hiziroglu, J. Thermoplast. Compos. Mater. 35, 391 (2019)

    Google Scholar 

  33. T. Ratanawilai, K. Nakawirot, A. Deachsrijan, C. Homkhiew, Fibers. Polym. 15, 2160 (2014)

    CAS  Google Scholar 

  34. A. Tavasoli, A. Samariha, Cellul. Chem. Technol. 51, 513 (2017)

    CAS  Google Scholar 

  35. K. Prabhakar, S. Debnath, M. Anwar, K. Palanikumar, I.O.P. Conf, Ser. Mater. Sci. Eng. 495, 1 (2019)

    Google Scholar 

  36. A.A. Benhamou, A. Boussetta, M. Nadifiyine, A. Moubarik, Polym. Bull. 79, 2089 (2022)

    Google Scholar 

  37. I.D.G.A. Subagia, N.P.G. Suardana, I.O.P. Conf, Ser. Mater. Sci. Eng. 539, 1 (2019)

    Google Scholar 

  38. G.O. Onyedika, G.C. Onuegbu, C. Onuoha, J. Mater. Sci. Chem. Eng. 8, 36 (2020)

    CAS  Google Scholar 

  39. W.A.A. Sadik, A.G.M.E. Demerdash, R. Abbas, A. Bedir, J. Polym. Environ. 29, 1600 (2021)

    CAS  Google Scholar 

  40. M. Shettar, U.A. Kini, S.S. Sharma, P. Hiremath, Mater. Today: Proc. 4, 11158 (2017)

    Google Scholar 

  41. N.R.R. Anbusagar, P.K. Giridharan, K. Palanikumar, Mater. Des. 54, 507 (2014)

    CAS  Google Scholar 

  42. M.A. Flores-Hernandez, I.R. Gonzalez, M.G. Lomeli-Ramirez, F.J. Fuentes-Talavera, J.A. Silva-Guzman, M.A. Cerpa-Gallegos, S. Garcia-Enriquez, J. Compos. Mater. 48, 209 (2012)

    Google Scholar 

  43. A.A. El-Fattah, E.A. Elkader, J. Compos. Mater. 52, 1215 (2017)

    Google Scholar 

  44. Z.F. Merzah, S. Fakhry, T.G. Allami, N.Y. Yuhana, A. Alamiery, Polym. 14, 526 (2022)

    CAS  Google Scholar 

  45. A. Salari, T. Tabarsa, A. Khazaeian, A. Saraeian, J. Wood Sci. 58, 513 (2012)

    CAS  Google Scholar 

  46. O. Percin, O. Uzun, BioResources 17, 2486 (2022)

    CAS  Google Scholar 

  47. S. Maleki, S.K. Najafi, G. Ebrahimi, M. Ghofrani, Constr. Build. Mater. 142, 499 (2017)

    Google Scholar 

  48. A. Chavooshi, M. Madhoushi, M. Navi, M.Y. Abareshi, Constr. Build. Mater. 52, 324 (2014)

    Google Scholar 

  49. T. Ratanawilai, S. Khamtree, S. Ratanawilai, Sci. Asia. 49, 1 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express our gratitude to the Department of Industrial Engineering, Faculty of the Engineering, Rajamangala University of Technology Srivijaya (RMUTSV), Thailand for supporting us with a location and research equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chainarong Srivabut.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamtree, S., Homkhiew, C., Srivabut, C. et al. Evaluation of Mechanical Properties of Composites Made from Recycled Plastic and Waste Rubberwood Using Multiply-Response Surface Optimization as Green Building Materials. Fibers Polym 24, 2819–2834 (2023). https://doi.org/10.1007/s12221-023-00266-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00266-w

Keywords

Navigation