Skip to main content
Log in

Performance of Wood-plastic Composites Manufactured from Post-consumer Plastics and Wood Waste under Coastal Weathering in Thailand

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The performance of wood-plastic composites (WPCs) under natural weathering needs to be further evaluated, in particular their resistance to coastal weathering in tropical counties. Because the coastal weathering is sensitive to the rising acidity of the sea and changes in the frequency of storms. Thus, the effects of coastal weathering, post-consumer plastic types (plastic bags, straws, and cups), and wood waste (twigs) contents in the range of 40–60 wt% on the durability of WPCs were investigated. The samples were prepared by a twin-screw extruder and a compression molding machine. The results revealed that the increase of wood flour from 40 to 60 wt% into the plastic bag composites insignificantly rose (about 0.12 %) the melting temperature, but significantly decreased (about 23.8%) the melting enthalpy of the un-weathered WPCs. Post-consumer plastic from straws exhibits higher lightness and discoloration than that from a bag and cup, the plastic bag shows the lowest these values. All the mechanical properties of the post-consumer plastics and WPCs significantly (α=0.05) reduced in all cases after coastal weathering for 6 months. Overall, the post-consumer plastics from both the straw and cup presented higher mechanical properties than the virgin high-density polyethylene; however, the WPCs based on the plastic bag showed the lowest loss in modulus of rupture, modulus of elasticity, and shear strength after coastal weathering for 6 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Markphan, C. Mamimin, W. Suksong, P. Prasertsan, and S. O-Thong, Peer J., https://doi.org/10.7717/peerj.9693 (2020).

  2. I. Kamdar, S. Ali, A. Bennui, K. Techato, and W. Jutidamrongphan, Resour. Conserv. Recyc., 149, 220 (2019).

    Article  Google Scholar 

  3. A. Ashori, Polym. Plast. Technol. Eng., 47, 741 (2008).

    Article  CAS  Google Scholar 

  4. P. T. Nguyen, M. Yasuhiro, and F. Takeshi, Environ. Monit. Assess., 175, 23 (2011).

    Article  Google Scholar 

  5. A. R. Putri, T. Fujimori, and M. Takaoka, J. Mater. Cycles Waste Manag., 20, 2140 (2018).

    Article  CAS  Google Scholar 

  6. PCD, Thailand State of Pollution Control Report, https://infofile.pcd.go.th/Waste/Wst2019.pdf (Accessed April 15, 2021).

  7. Greenpeace Thailand, Greenpeace is Powered by People Like You. https://www.greenpeace.org/thailand (Accessed July 23, 2021).

  8. Y. L. Jiun, C. T. Tze, U. Moosa, and M. A. Tawawneh, Polym. Polym. Compos., 24, 735 (2016).

    CAS  Google Scholar 

  9. T. A. Lin, J. H. Lin, and L. M. Bao, Appl. Sci., 10, 5810 (2020).

    Article  CAS  Google Scholar 

  10. B. Liu, P. Zhu, A. C. Xu, and L. M. Bao, J. Thermoplast. Compos. Mater., 32, 342 (2019).

    Article  CAS  Google Scholar 

  11. S. P. Cestari, P. J. Martin, P. R. Hanna, M. P. Kearns, L. C. Mendes, and B. Millar, J. Polym. Eng., 41, 509 (2021).

    Article  CAS  Google Scholar 

  12. C. Homkhiew, T. Ratanawilai, and W. Thongruang, J. Thermoplast. Compos. Mater., 28, 179 (2015).

    Article  CAS  Google Scholar 

  13. L. C. Yu, D. F. Zhao, and W. Wang, Waste Manag., 84, 402 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. C. Srivabut, T. Ratanawilai, and S. Hiziroglu, Constr. Build. Mater., 162, 450 (2018).

    Article  CAS  Google Scholar 

  15. T. Ratanawilai and K. Taneerat, Constr. Build. Mater., 172, 349 (2018).

    Article  CAS  Google Scholar 

  16. C. Srivabut, T. Ratanawilai, and S. Hiziroglu, J. Mater. Cycles Waste Manag., 23, 1503 (2021).

    Article  CAS  Google Scholar 

  17. X. L. Hao, X. Yi, L. C. Sun, D. Y. Tu, Q. W. Wang, and R. X. Ou, Constr. Build. Mater., 226, 879 (2020).

    Article  Google Scholar 

  18. T. Ratanawilai, K. Nakawirot, A. Deachsrijan, and C. Homkhiew, Fiber. Polym., 15, 2160 (2014).

    Article  CAS  Google Scholar 

  19. A. N. Shebani, A. J. Van Reenen, and M. Meincken, J. Compos. Mater, 43, 1305 (2009).

    Article  CAS  Google Scholar 

  20. E. Kuka, D. Cirule, J. Kajaks, I. Andersone, and B. Andersons, Int. Wood Prod. J., 9, 90 (2018).

    Article  Google Scholar 

  21. C. Homkhiew, T. Ratanawilai, and W. Thongruang, Ind. Crop Prod., 56, 52 (2014).

    Article  CAS  Google Scholar 

  22. D. Friedrich and A. Luible, Constr. Build. Mater., 124, 1142 (2016).

    Article  Google Scholar 

  23. K. C. Hung, Y. L. Chen, and J. H. Wu, Polym. Degrad. Stabil., 97, 1680 (2012).

    Article  CAS  Google Scholar 

  24. R. M. Taib, N. S. A. Zauzi, Z. A. M. Ishak, and H. D. Rozman, Malay. Polym. J., 5, 193 (2010).

    Google Scholar 

  25. X. Zhou, S. Huang, and L. Chen, J. Vinyl. Addit. Technol., 22, 311 (2016).

    Article  Google Scholar 

  26. C. B. Silva, A. B. Martins, A. L. Catto, and R. M. C. Santana, Revis. Matéria, https://doi.org/10.1590/S1517-707620170002.0168 (2017).

  27. H. Essabir, R. Boujmal, M. O. Bensalah, D. Rodrigue, R. Bouhfid, and A. Qaiss, Mech. Mater, 98, 36 (2016).

    Article  Google Scholar 

  28. P. Zou, H. Xiong, and S. Tang, Carbohydr. Polym., 73, 378 (2008).

    Article  CAS  Google Scholar 

  29. G. Liang, J. Xu, S. Bao, and W. Xu, J. Appl. Polym. Sci., 91, 3974 (2004).

    Article  CAS  Google Scholar 

  30. T. Ratanawilai and C. Srivabut, Case Stud. Constr. Mater., 16, e00791 (2022).

    Google Scholar 

  31. M. D. H. Beg and K. L. Pickering, Polym. Degrad. Stabil., 93, 1939 (2008).

    Article  CAS  Google Scholar 

  32. C. Homkhiew, W. Boonchouytan, W. Cheewawuttipong, and T. Ratanawilai, J. Mater. Cycles Waste Manag., 20, 1792 (2018).

    Article  CAS  Google Scholar 

  33. S. Butylina, M. Hyvärinen, and T. Kärki, Polym. Degrad. Stabil., 97, 337 (2012).

    Article  CAS  Google Scholar 

  34. M. Pracella, L. Rolla, D. Chionna, and A. Galeski, Macromol. Chem. Phys., 203, 1473 (2002).

    Article  CAS  Google Scholar 

  35. L. K. Krehula, Z. Katančić, A. P. Siročić, and Z. Hrnjak-Murgić, J. Wood Chem. Technol., 34, 39 (2014).

    Article  CAS  Google Scholar 

  36. I. Spiridon, O. M. Paduraru, M. Rudowski, M. Kozlowski, and R. N. Darie, Ind. Eng. Chem. Res., 51, 7279 (2012).

    Article  CAS  Google Scholar 

  37. C. Badji, L. Soccalingame, H. Garay, A. Bergeret, and J. C. Bénézet, Polym. Degrad. Stabil., 137, 162 (2017).

    Article  CAS  Google Scholar 

  38. S. Khamtree, T. Ratanawilaia, and S. Ratanawilaib, Mater. Today Commun., 24, 100971 (2020).

    Article  CAS  Google Scholar 

  39. Y. Peng, R. Liu, J. Cao, and Y. Chen, Appl. Surf. Sci., 317, 385 (2014).

    Article  CAS  Google Scholar 

  40. R. N. Darie, R. Bodirlau, C. A. Teaca, J. Macyszyn, M. Kozlowski, and I. Sporodpn, Int. J. Polym. Anal. Charact., 18, 315 (2013).

    Article  CAS  Google Scholar 

  41. Y. Te-Hsin, Y. Tsu-Hsien, C. Wei-Cheng, and L. Shao-Yuan, Constr. Build. Mater., 88, 159 (2015).

    Article  Google Scholar 

  42. S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari, Case Stud. Constr. Mater., 8, 203 (2018).

    Google Scholar 

  43. S. P. Appu, O. Ashwaq, M. Al-Harthi, and Y. Umar, J. Thermoplas. Compos. Mater., 34, 316 (2021).

    Article  CAS  Google Scholar 

  44. C. Homkhiew, S. Rawangwong, W. Boonchouytan, W. Thongruang, and T. Ratanawilai, Int. J. Polym. Sci., https://doi.org/10.1155/2018/7179527 (2018).

  45. E. Yousif and R. Haddad, SpringerPlus., 2, 398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. S. B. Torun, E. D. Tomak, A. D. Cavdar, and F. Mengeloglu, Polym. Test., 101, 107290 (2021).

    Article  Google Scholar 

  47. B. Chen, Z. Luo, H. Chen, C. Chen, D. Cai, P. Qin, H. Cao, and T. Tan, Waste Biomass Valori., 11, 1701 (2020).

    Article  CAS  Google Scholar 

  48. V. D. Nguyen, T. T. Nguyen, A. Zhang, J. Hao, and W. Wang, J. For. Res., 31, 1071 (2020).

    Article  CAS  Google Scholar 

  49. A. Vedrtnam, S. Kumar, and S. Chaturvedi, Compos. B Eng., 176, 107282 (2019).

    Article  CAS  Google Scholar 

  50. C. Lazrak, B. Kabouchi, M. Hammi, A. Famiri, and M. Ziani, Case Stud. Constr. Mater., 10, e00227 (2019).

    Google Scholar 

  51. M. S. Jamil, I. Ahmad, and I. Abdullah, J. Polym. Res., 13, 315 (2006).

    Article  CAS  Google Scholar 

  52. H. Du, W. Wang, Q. Wang, Z. Zhang, S. Sui, and Y. Zhan, J. Appl. Polym. Sci., 118, 1068 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Thailand Science Research and Innovation (Research Grant Code: 324) and the Rajamangala University of Technology Srivijaya (RMUTSV), Thailand. We would also like to thank Mr. Suppawit Hongsopa and Mr. Ammarin Intarasanee for supporting this work and to convey my thanks to Ms. Iris Leonard from University of North Carolina at Chapel Hill for editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chatree Homkhiew.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homkhiew, C., Srivabut, C., Rawangwong, S. et al. Performance of Wood-plastic Composites Manufactured from Post-consumer Plastics and Wood Waste under Coastal Weathering in Thailand. Fibers Polym 23, 2679–2693 (2022). https://doi.org/10.1007/s12221-022-0014-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-0014-9

Keywords

Navigation