Skip to main content
Log in

Investigations on MWCNT Embedded Carbon/Epoxy Composite Joints Subjected to Hygrothermal Aging under Bolt Preloads

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present work emphasizes the effects of hygrothermal aging on the bolted joints prepared from carbon/epoxy nanocomposites at different bolt preloads. The effect of multiwalled carbon nanotubes (MWCNT) was investigated by incorporating 0.1 to 0.5 wt.% of MWCNT in composite laminates with 0.3 wt.% of MWCNT giving the best mechanical properties. The water absorption studies at three hygrothermal conditions i.e., 25 °C, 45 °C, and 65 °C for 30 days, were conducted for neat and 0.3 wt.% of MWCNT added composite specimens, as per ASTM D5229. The bolted joints were designed using ASTM D5961 having a width to diameter ratio (W/D) and edge to diameter ratio (E/D) equal to 6 and 5, respectively. The bolt torque effect at different levels i.e., 0, 2, and 4 Nm were studied to estimate the ultimate failure loads in the nanocomposite joints. In all aspects, incorporating MWCNT shows better results than neat configured composites. The statistical investigations were performed using the central composite design on different control factors i.e. temperature, duration, bolt torque, and material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Guzmán, J. Cugnoni, and T. Gmür, Compos. Struct., 111, 179 (2014).

    Article  Google Scholar 

  2. C. Soutis, “Polymer Composites in the Aerospace Industry”, 1st ed., pp.1–18, Elsevier, Woodhead Publishing, US, 2015.

    Book  Google Scholar 

  3. Z. K. Awad, T. Aravinthan, Y. Zhuge, and F. Gonzalez, Mater. Des., 33, 534 (2012).

    Article  CAS  Google Scholar 

  4. M. L. Dano, G. Gendron, and A. Picard, Compos. Struct., 50, 287 (2000).

    Article  Google Scholar 

  5. B. C. Ray, J. Colloid Interface Sci., 298, 111 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. W. Tian and J. Hodgkin, J. Appl. Polym. Sci., 115, 2981 (2010).

    Article  CAS  Google Scholar 

  7. B. Dao, J. H. Hodgkin, J. Krstina, J. Mardel, and W. Tian, J. Appl. Polym. Sci., 106, 4264 (2007).

    Article  CAS  Google Scholar 

  8. B. Dao, J. Hodgkin, J. Krstina, J. Mardel, and W. Tian, J. Appl. Polym. Sci., 115, 901 (2010).

    Article  CAS  Google Scholar 

  9. A. Ladhari, H. B. Daly, H. Belhadjsalah, K. C. Cole, and J. Denault, Polym. Degrad. Stab., 95, 429 (2010).

    Article  CAS  Google Scholar 

  10. K. P. Pramoda and T. Liu, J. Polym. Sci., Part B: Polym. Phys., 42, 1823 (2004).

    Article  CAS  Google Scholar 

  11. M. Megahed, M. A. Abd El-baky, A. M. Alsaeedy, and A. E. Alshorbagy, Compos. Part B-Eng., 176, 107277 (2019).

    Article  CAS  Google Scholar 

  12. M. A. Abd El-baky and M. A. Attia, Polym. Compos., 41, 4130 (2020).

    Article  CAS  Google Scholar 

  13. K. S. Chani, J. S. Saini and H. Bhunia, J. Braz. Soc. Mech. Sci. Eng., 40, 184 (2018).

    Article  Google Scholar 

  14. S. Alessi, G. Pitarresi, and G. Spadaro, Compos. Part B-Eng., 67, 145 (2014).

    Article  CAS  Google Scholar 

  15. B. Hong, G. Xian, and Z. Wang, Adv. Struct. Eng., 21, 571 (2018).

    Article  Google Scholar 

  16. L. R. Bao and A. F. Yee, Compos. Sci. Technol., 62, 2099 (2002).

    Article  CAS  Google Scholar 

  17. W. S. Chow, A. Abu Bakear, and Z. A. Mohd Ishak, J. Appl. Polym. Sci., 98, 780 (2005).

    Article  CAS  Google Scholar 

  18. S. Firdosh, H. N. N. Murthy, R. Pal, G. Angadi, N. Raghavendra, and M. Krishna, Compos. Part B-Eng., 69, 443 (2015).

    Article  CAS  Google Scholar 

  19. T. Glaskova and A. Aniskevich, Compos. Sci. Technol., 69, 2711 (2009).

    Article  CAS  Google Scholar 

  20. R. K. Nayak, K. K. Mahato, and B. C. Ray, Compos. Part A: Appl. Sci. Manuf., 90, 736 (2016).

    Article  CAS  Google Scholar 

  21. M. Megahed, M. Abd El-baky, A. Alsaeedy, and A. E. Alshorbagy, Fiber. Polym., 21, 840 (2020).

    Article  CAS  Google Scholar 

  22. R. K. Prusty, D. K. Rathore, and B. C. Ray, J. Appl. Polym. Sci., 135, 45987 (2018).

    Article  CAS  Google Scholar 

  23. C. R. González, E. J. Trujillo, J. A. R. González, A. Mornas, and A. Talha, Polym. Compos., 41, 2181 (2020).

    Article  CAS  Google Scholar 

  24. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S. V. Lomov, A. W. van Vuure, L. Gorbatikh, P. Moldenaers, and I. Verpoest, Carbon, 47, 2914 (2009).

    Article  CAS  Google Scholar 

  25. C. Atas, Compos. Struct., 88, 40 (2009).

    Article  Google Scholar 

  26. T. Qin, L. Zhao, and J. Zhang, Compos. Struct., 100, 413 (2013).

    Article  Google Scholar 

  27. A. Ataş and C. Soutis, Compos. Part B-Eng., 58, 25 (2014).

    Article  CAS  Google Scholar 

  28. V. Mara, R. Haghani, and M. Al-Emrani, J. Compos. Mater., 50, 3001 (2016).

    Article  CAS  Google Scholar 

  29. I. K. Giannopoulos, D. Doroni-Dawes, K. I. Kourousis, and M. Yasaee, Compos. Part B-Eng., 125, 19 (2017).

    Article  Google Scholar 

  30. P. Jojibabu, G. D. J. Ram, A. P. Deshpande, and S. R. Bakshi, Polym. Degrad. Stab., 140, 84 (2017).

    Article  CAS  Google Scholar 

  31. D. D. L. Chung and D. Chung, “Carbon Fiber Composites”, p.67, Elsevier, Boston, 2012.

  32. C. Soutis, Mater. Sci. Eng. A, 412, 171 (2005).

    Article  CAS  Google Scholar 

  33. M. Kumar, J. S. Saini, and H. Bhunia, J. Mech. Sci. Technol., 34, 1059 (2020).

    Article  Google Scholar 

  34. D. K. Rathore, R. K. Prusty, D. S. Kumar, and B. C. Ray, Compos. Part A: Appl. Sci. Manuf., 84, 364 (2016).

    Article  CAS  Google Scholar 

  35. S. Bal and S. Saha, J. Polym. Eng., 37, 633 (2017).

    Article  CAS  Google Scholar 

  36. S. A. Grammatikos, M. Evernden, J. Mitchels, B. Zafari, J. T. Mottram, and G. C. Papanicolaou, Mater. Des., 96, 283 (2016).

    Article  CAS  Google Scholar 

  37. R. K. Nayak and B. C. Ray, Arch. Civ. Mech. Eng., 18, 1597 (2018).

    Article  Google Scholar 

  38. M. Wang, X. Xu, J. Ji, Y. Yang, J. Shen, and M. Ye, Compos. Part B-Eng., 107, 1 (2016).

    Article  CAS  Google Scholar 

  39. S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, Compos. Struct., 207, 92 (2019).

    Article  Google Scholar 

  40. F. A. Ramirez and L. A. Carlsson, J. Mater. Sci., 44, 3035 (2009).

    Article  CAS  Google Scholar 

  41. R. M. V. G. K. Rao, N. Balasubramanian, and M. Chanda, J. Reinf. Plast. Compos., 3, 232 (1984).

    Article  CAS  Google Scholar 

  42. M. Deroiné, A. Le Duigou, Y. M. Corre, P. Y. Le Gac, P. Davies, G. César, and S. Bruzaud, Polym. Degrad. Stab., 108, 319 (2014).

    Article  CAS  Google Scholar 

  43. N. M. Zulfli, A. A. Bakar, and W. Chow, J. Reinf. Plast. Compos., 32, 1715 (2013).

    Article  CAS  Google Scholar 

  44. J. H. Lee, K. Y. Rhee, and J. H. Lee, Appl. Surface Sci., 256, 7658 (2010).

    Article  CAS  Google Scholar 

  45. M. L. Costa, S. F. M. de Almeida, and M. C. Rezende, Mater Res., 8, 335 (2005).

    Article  CAS  Google Scholar 

  46. L. Vertuccio, A. Sorrentino, L. Guadagno, V. Bugatti, M. Raimondo, C. Naddeo, and V. Vittoria, J. Polym. Res., 20, 178 (2013).

    Article  CAS  Google Scholar 

  47. B. Abdel-Magid, S. Ziaee, K. Gass, and M. Schneider, Compos. Struct., 71, 320 (2005).

    Article  Google Scholar 

  48. F. Ellyin and R. Maser, Compos. Sci. Technol., 64, 1863 (2004).

    Article  CAS  Google Scholar 

  49. N. Guermazi, A. B. Tarjem, I. Ksouri, and H. F. Ayedi, Compos. Part B-Eng., 85, 294 (2016).

    Article  CAS  Google Scholar 

  50. G. C. Papanicolaou, Th.V. Kosmidou, A. S. Vatalis, and C. G. Delides, J. Appl. Polym. Sci., 99, 1328 (2006).

    Article  CAS  Google Scholar 

  51. D. A. Bond and P. A. Smith, Appl. Mech. Rev., 59, 249 (2006).

    Article  Google Scholar 

  52. X. J. Lv, Q. Zhang, X. F. Li, and G. J. Xie, J. Reinf. Plast. Compos., 27, 659 (2008).

    Article  CAS  Google Scholar 

  53. H. S. Wang, C. L. Hung, and F. K. Chang, J. Compos. Mater., 30, 1284 (1996).

    Article  Google Scholar 

  54. K. S. Chani, J. S. Saini, and H. Bhunia, Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl., 233, 2108 (2019).

    CAS  Google Scholar 

  55. M. Alkhatib, A. Mamun, and I. Akbar, Int. J. Environ. Sci. Technol., 12, 1295 (2015).

    Article  CAS  Google Scholar 

  56. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, 4th ed., p.856, John Wiley & Sons, Hoboken, NJ, 2016.

    Google Scholar 

Download references

Acknowledgment

This work was financially supported (No. 35/14/10/2017-BRNS with RTAC) by Bhabha Atomic Research Centre (BARC), Trombay, Mumbai (India). The authors are really thankful to the BARC team for their technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Saini, J.S. & Bhunia, H. Investigations on MWCNT Embedded Carbon/Epoxy Composite Joints Subjected to Hygrothermal Aging under Bolt Preloads. Fibers Polym 22, 1957–1975 (2021). https://doi.org/10.1007/s12221-021-0834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0834-z

Keywords

Navigation