Skip to main content
Log in

Development of Polydiacetylene Embedded Polyurethane Nanocomposites as a Mask for Sensing and Filtering Fine Dust

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The importance of fine dust has been recognized around the world, and research has been conducted on various regulatory devices and protection devices. In this study, we prepared PU/PDA(polyurethane/polydiacetylene) nanofiber composite materials using 10,12-pentacosadiynoic acid (PCDA) and polyurethane (PU), which have color transition phenomena, to develop mask materials that can detect and block fine dust. PCDA was mixed with polyurethane as the supporting polymer, and the solution was electrospun to produce nanofiber composites on a polypropylene spunbond nonwoven substrate. Then, the nanocomposites were photopolymerized using UV irradiation to produce PU/PDA nanofiber composites with the diameters of the fibers ranging from 129–254 nm at various mass ratios of PU to PCDA. As the mass ratios increased from 4:1 to 6:1, the diameters of the nanofibers also increased. By using the PP spunbond nonwoven material, the PU/PDA fibrous membranes (basis weight: 3 g/m2) had tensile strengths approaching 3.0–3.5 kgf/cm2. The asprepared nanocomposites with comparable air permeability (112 mm/s) had surprisingly high filtration efficiencies (97.8–99.6 %) and low pressure drops (56.9–61.78 Pa) for sodium chloride aerosol particles in the range of 400–600 nm and paraffin aerosol particles with an average particle diameter of 400 nm. The colorimetric response was more sensitive in the nanofibers made with a high mass ratio of PU to PCDA, i.e., up to 80 µg/m3 of fine dust. A clear visual color transition was observed when the concentration of the fine dust was 100 µg/m3. It was confirmed that the visual color transition appeared clearly enough to be distinguished easily by the naked eye, even in the nanofibers with lower contents of PDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Cost of Air Pollution: Health Impacts of Road Transport. Paris: OECD Publishing, OECD, 2014.

  2. J. A. Ailshire and P. Clarke, J. Gerontol B Psychol. Sci. Soc. Sci., 70, 322 (2015).

    Article  PubMed  Google Scholar 

  3. L. Yin, Z. Niu, X. Chen, J. Chen, F. Zhang, and L. Xu, China, Environ. Sci. Pollut. Res. Int., 21, 5141 (2014).

    Article  CAS  Google Scholar 

  4. C. A. Pope III and D. W. Dockery, J. Air Waste Manage. Assoc., 56, 709 (2006).

    Article  CAS  Google Scholar 

  5. D. R. Gold and M. A. Mittleman, Circulation, 127, 1903 (2013).

    Article  PubMed  Google Scholar 

  6. J. T. Zelikoff, L. C. Chen, M. D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, and R. B. Schlesinger, Inhal. Toxicol., 15, 131 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Ministry of Environment, Recent Status of Fine Dust and Countermeasures, Sejong: Ministry of Enviornment, Korea, 2013.

    Google Scholar 

  8. J. Dia, R. Chen, X. Meng, C. Yang, Z. Zhao, and H. Kan, Environ. Pollut., 203, 116 (2015).

    Article  CAS  Google Scholar 

  9. M. Wang, R. Beelen, M. Stafoggia, O. Raaschou-Nielsen, Z. J. Andersen, B. Hoffmann, P. Fischer, D. Houthuijs, M. Nieuwenhuijsen, G. Weinmayr, P. Vineis, W. W. Xun, K. Dimakopoulou, E. Samoli, T. Laatikainen, T. Lanki, A. W. Turunen, B. Oftedal, P. Schwarze, G. Aamodt, J. Penell, U. D. Faire, M. L. Korek, K. Leander, G. Pershagen, N. L. Pedersen, C. Östenson, L. Fratiglioni, K. T. Eriksen, M. Sørensen, A. Tjønneland, B. Bueno-de-Mesquita, M. Eeftens, M. L. Bots, K. Meliefste, U. Krämer, J. Heinrich, Do. Sugiri, T. Key, K. de Hoogh, K. Wolf, A. Peters, J. Cyrys, A. Jaensch, H. Concin, G. Nagel, M. Tsai, H. Phuleria, A. Ineichen, N. Künzli, N. Probst-Hensch, E.l Schaffner, A. Vilier, F. Clavel-Chapelon, C. Declerq, F. Ricceri, C. Sacerdote, A. Marcon, C. Galassi, E. Migliore, A. Ranzi, G. Cesaroni, C. Badaloni, F. Forastiere, M. Katsoulis, A. Trichopoulou, M. Keuken, A. Jedynska, I. M. Kooter, J. Kukkonen, R. S. Sokhi, B. Brunekreef, K. Katsouyanni, and G. Hoek, Environ. Int., 66, 97 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. M. Kampa and E. Castanas, Environ. Pollut., 151, 362 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. S. Cavaliere, S. Subianto, I. Savych, D. J. Jones, and J. Rozière, Energy Environ. Sci., 4, 4761 (2011).

    Article  CAS  Google Scholar 

  12. T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Z. Su, J. Ding, and G. Wei, RSC Adv., 4, 52598 (2014).

    Article  CAS  Google Scholar 

  14. N. Wang, Y. Si, N. Wang, G. Sun, M. El-Newehy, S. S. Al-Deyab, and B. Ding, Sep. Pur. Technol., 126, 44 (2014).

    Article  CAS  Google Scholar 

  15. V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 28, 114 (2011).

    Article  CAS  Google Scholar 

  16. P. Khude, J. Mater. Sci. Eng., 6, 1 (2017).

    Google Scholar 

  17. Q. Zhang, J. Welch, H. Park, C. Wu, W. Sigmund, and J. C. M. Marjnissen, J. Aerosol. Sci., 41, 230 (2010).

    Article  CAS  Google Scholar 

  18. L. Bao, K. Seki, H. Niinuma, Y. Otani, R. Balgis, T. Ogi, L. Gradon, and K. Okuyama, Sep. Pur. Technol., 159, 100 (2016).

    Article  CAS  Google Scholar 

  19. K. Kosmider and J. Scott, Filtra Separat, 39, 20 (2002).

    Article  CAS  Google Scholar 

  20. X. Qian and B. Stadler, Chem. Mater., 31, 1196 (2019).

    Article  CAS  Google Scholar 

  21. R. W. Carpick, D. Y. Sasaki, and A. R. Burns, Langmuir, 16, 1270 (2000).

    Article  CAS  Google Scholar 

  22. S. Ryu, I. Yoo, S. Song, B. Yoon, and J. Kim, J. Am. Chem. Soc., 131, 3800 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Q. Cheng and R. C. Stevens, Langmuir, 14, 1974 (1998).

    Article  CAS  Google Scholar 

  24. U. Jonas, K. Shah, S. Norvez, and D. H. Charych, J. Am. Chem. Soc., 121, 4580 (1999).

    Article  CAS  Google Scholar 

  25. M. O. Kim, M. Q. Khan, A. Ullah, N. P. Duy, C. Zhu, J. S. Lee, and I. S. Kim, Mate. Res. Express, 6, 105372 (2019).

    Article  CAS  Google Scholar 

  26. M. O. Kim, M. Q. Khan, A. Ullah, D. Phan, C. Zhu, J. Lee, and I. S. Kim, Mater. Res. Express, 7, 085405 (2020).

    Article  CAS  Google Scholar 

  27. S. Lee and J. M. Kim, Macromolecules, 40, 9201 (2007).

    Article  CAS  Google Scholar 

  28. F. Jannah and J. M. Kim, Dyes Pigm., 169, 15 (2019).

    Article  CAS  Google Scholar 

  29. I. S. Park, H. J. Park, W. Jeong, J. Nam, Y. Kang, K. Shin, H. Chung, and J. M. Kim, Macromolecules, 49, 1270 (2016).

    Article  CAS  Google Scholar 

  30. Y. Chen, Y. Xi, Y. Ke, W. Li, Y. Long, J. Li, L. Wang, and X. Zhang, Sci. China Mater., 61, 969 (2018).

    Article  CAS  Google Scholar 

  31. K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim, and S. W. Choi, J. Polym. Sci., Part B: Polym. Phys., 41, 1256 (2003).

    Article  CAS  Google Scholar 

  32. J. P. Yapor, A. Alharby, C. Gentry-Weeks, M. M. Reynolds, A. K. M. Mashud Alam, and Y. V. Li, ACS Omega, 2, 7334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. V. Kadam, L. Wang, and R. Padhye, J. Ind. Text., 47, 2253 (2018).

    Article  CAS  Google Scholar 

  34. S. Sundarrajan, K. L. Tan, S. H. Lim, and S. Ramakrishna, Procedia Eng., 75, 159 (2014).

    Article  CAS  Google Scholar 

  35. R. A. Abuzade, A. Zadhoush, and A. A. Gharehaghaji, J. Appl. Polym. Sci., 126, 232 (2012).

    Article  CAS  Google Scholar 

  36. P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, AIChE Journal, 45, 190 (1999).

    Article  CAS  Google Scholar 

  37. B. Maze, H. Vahedi Tafreshi, Q. Wang, and B. Pourdeyhimi, J. Aerosol. Sci., 38, 550 (2007).

    Article  CAS  Google Scholar 

  38. N. Vitchuli, Q. Shi, J. Nowak, M. McCord, M. Bourham, and X. Zhang, J. Appl. Polym. Sci., 116, 2181 (2010).

    CAS  Google Scholar 

  39. C. Hung and W. W. Leung, Sep. Pur. Technol., 79, 34 (2011).

    Article  CAS  Google Scholar 

  40. R. Yang, H. Wang, Y. Wan, and W. Gao, Ind. Textila, 66, 153 (2015).

    Google Scholar 

  41. R. Uppal, G. Bhat, C. Eash, and K. Akato, Fiber. Polym., 14, 660 (2013).

    Article  CAS  Google Scholar 

  42. P. Heikkila, A. Taipale, M. Lehtimaki, and A. Harlin, Polym. Eng. Sci., 48, 1168 (2008).

    Article  CAS  Google Scholar 

  43. J. Matulevicius, L. Kliucininkas, T. Prasauskas, D. Buivydiene, and D. Martuzevicius, J. Aero. Sci., 92, 27 (2016).

    Article  CAS  Google Scholar 

  44. J. Lee, S. Balakrisnan, J. Cho, S. Jeon, and J. Kim, J. Mater. Chem., 21, 2648 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by Ministry of Science, ICT & Future Planning of the Korea government. (NRF-2017R1A2B4009315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Soon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Lee, JS. Development of Polydiacetylene Embedded Polyurethane Nanocomposites as a Mask for Sensing and Filtering Fine Dust. Fibers Polym 22, 489–497 (2021). https://doi.org/10.1007/s12221-021-0187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0187-7

Keywords

Navigation