Skip to main content
Log in

Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, a notable chitosan/poly(ethylene oxide) nanofiber mats containing tea tree oil liposomes (TOL-CENs) were successfully fabricated using electrospinning process. The microstructures and morphology were characterized by scanning electron microscopy. The porosity, fluid absorbability, water vapor permeability and mechanical properties of nanofiber mats were also estimated by ethanol density method, gravimetric method, dish method and tensile test, respectively. Compared to the chitosan/poly(ethylene oxide) composite freeze-dried sponges containing tea tree oil liposomes, TOL-CENs had greater porosity, water absorption, breathability and better mechanical properties. In addition, the controlled-release properties and long-term bactericidal capability of the material were also assessed. From the analysis of the release kinetics and mechanism, it was found that the significant decreased terpinen-4-ol concentration gradient from liposomal surface to the outside of material was the key to the sustained terpinen-4-ol release in virtue of liposomal encapsulation. TOL-CENs exhibited long-term and more excellent microbicidal effects against Staphylococcus aureus, Escherichia coli and Candida albicans than chitosan/poly(ethylene oxide) nanofiber mats. The combination of tea tree oil liposomes and chitosan in nanofiber mats synergistically destroyed cell membrane, prevented cell adhesion and caused the irregular aggregation of cytoplasm, resulting in cell disintegration observed by transmission electron microscope. In summary, TOL-CENs had potential application value as a long-term antimicrobial nonwoven materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ren, J. Guo, Q. Lu, D. Xu, J. Qin, and F. Yan, Chemsuschem, 11, 1092 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Zhu, C. Xu, N. Zhang, X. Ding, B. Yu, and F.-J. Xu, Adv. Funct. Mater., 28, 1706709 (2018).

    Article  CAS  Google Scholar 

  3. T. V. Ivanova, R. Krumpolec, T. Homola, E. Musin, G. Baier, K. Landfester, D. C. Cameron, and M. Cernak, Plasma Processes Polym., 14, e1600231 (2017).

    Article  CAS  Google Scholar 

  4. I. Yousefi, M. Pakravan, H. Rahimi, A. Bahador, Z. Farshadzadeh, and I. Haririan, Mat. Sci. Eng. C-Mater., 75, 433 (2017).

    Article  CAS  Google Scholar 

  5. C. Kriegel, A. Arrechi, K. Kit, D. J. McClements, and J. Weiss, Crit. Rev. Food Sci. Nutr., 48, 775 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. H. Cui, J. Wu, C. Li, and L. Lin, LWT — Food Sci. Technol., 81, 233 (2017).

    Article  CAS  Google Scholar 

  7. L. Lin, Y. Zhu, C. Li, L. Liu, D. Surendhiran, and H. Cui, Carbohydr. Polym., 198, 225 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. H. Cui, M. Bai, and L. Lin, Carbohydr. Polym., 179, 360 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. M. Sadri, S. Arab-Sorkhi, H. Vatani, and A. Bagheri-Pebdeni, Fiber. Polym., 16, 1742 (2015).

    Article  CAS  Google Scholar 

  10. S. Degoutin, M. Jimenez, F. Chai, T. Pinalie, S. Bellayer, M. Vandenbossche, C. Neut, N. Blanchemain, and B. Martel, J. Biomed. Mater. Res. A, 102, 3846 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. N. Naveen, R. Kumar, S. Balaji, T. S. Uma, T. S. Natrajan, and P. K. Sehgal, Adv. Eng. Mater., 12, B380 (2010).

    Article  Google Scholar 

  12. N. E. Zander, M. Gillan, and D. Sweetser, Materials, 9, 247 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  13. X. Deng, A. Nikiforov, D. Vujosevic, V. Vuksanovic, B. Mugosa, U. Cvelbar, N. De Geyter, R. Morent, and C. Leys, Mater. Lett., 149, 95 (2015).

    Article  CAS  Google Scholar 

  14. H. Rokbani, F. Daigle, and A. Ajji, Nanomaterials, 8, 129 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  15. C. F. Carson, K. A. Hammer, and T. V. Riley, Clin. Microbiol. Rev., 19, 50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Sherry, C. Charcosset, H. Fessi, and H. Greige-Gerges, J. Liposome Res., 23, 268 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. B. M. Hausen, Dermatitis, 15, 213 (2004).

    PubMed  Google Scholar 

  18. B. M. Hausen, J. Reichling, and M. Harkenthal, Am. J. Contact Dermat., 10, 68 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Y. Ge and M. Q. Ge, J. Liposome Res., 25, 222 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. A. M. Abdelgawad, S. M. Hudson, and O. J. Rojas, Carbohydr. Polym., 100, 166 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. J. S. Choi, K. W. Leong, and H. S. Yoo, Biomaterials, 29, 587 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. K. Ohkawa, D. I. Cha, H. Kim, A. Nishida, and H. Yamamoto, Macromol. Rapid Commun., 25, 1600 (2004).

    Article  CAS  Google Scholar 

  23. X. Y. Geng, O. H. Kwon, and J. H. Jang, Biomaterials, 26, 5427 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. B. M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, and W. H. Park, Polymer, 45, 7137 (2004).

    Article  CAS  Google Scholar 

  25. B. Duan, C. H. Dong, X. Y. Yuan, and K. D. Yao, J. Biomaterials Sci-polym. E., 15, 797 (2004).

    Article  CAS  Google Scholar 

  26. L. Deng, M. Taxipalati, A. Zhang, F. Que, H. Wei, F. Feng, and H. Zhang, J. Agr. Food Chem., 66, 6219 (2018).

    Article  CAS  Google Scholar 

  27. D. Wang, Q. Lu, M. Wei, and E. Guo, J. Appl. Polym. Sci., 135, 46504 (2018).

    Article  CAS  Google Scholar 

  28. R. X. Wu, G. F. Zheng, W. W. Li, L. B. Zhong, and Y. M. Zheng, J. Nanosci. Nanotechnol., 18, 5624 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Y. Ge and M. Q. Ge, J. Exp. Nanosci., 11, 345 (2015).

    Article  CAS  Google Scholar 

  30. R. Bnyan, I. Khan, T. Ehtezazi, I. Saleem, S. Gordon, F. O’Neill, and M. Roberts, J. Pharm. Sci., 107, 1237 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. K. B. Johnsen, J. M. Gudbergsson, M. Duroux, T. Moos, T. L. Andresen, and J. B. Simonsen, J. Control. Release, 269, 10 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. C. Liolios, O. Gortzi, S. Lalas, J. Tsaknis, and I. Chinou, Food Chem., 112, 77 (2009).

    Article  CAS  Google Scholar 

  33. C. Sinico, A. De Logu, F. Lai, D. Valenti, M. Manconi, G. Loy, L. Bonsignore, and A. M. Fadda, Eur. J. Pharm. Biopharm., 59, 161 (2005).

    Article  CAS  Google Scholar 

  34. E. Moghimipour, N. Aghel, A. Zarei Mahmoudabadi, Z. Ramezani, and S. Handali, Jundishapur J. Nat. Pharm. Prod., 7, 117 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. H. Cui, L. Yuan, W. Li, and L. Lin, Int. J. Food Sci. Tech., 52, 687 (2017).

    Article  CAS  Google Scholar 

  36. H. Cui, M. Bai, M. M. A. Rashed, and L. Lin, Int. J. Food Microbiol., 266, 69 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. L. Lin, Y. Dai, and H. Cui, Carbohydr. Polym., 178, 131 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. L. Lin, Y. Zhu, and H. Cui, Lwt-Food Sci. Technol., 97, 711 (2018).

    Article  CAS  Google Scholar 

  39. H. Cui, M. Bai, C. Li, R. Liu, and L. Lin, LWT — Food Sci. Technol., 96, 671 (2018).

    Article  CAS  Google Scholar 

  40. Y. Ge and J. P. Tang, Fiber. Polym., 17, 862 (2016).

    Article  CAS  Google Scholar 

  41. J. P. Tang and Y. Ge, Fiber. Polym., 18, 424 (2017).

    Article  CAS  Google Scholar 

  42. J. L. Ford, K. Mitchell, P. Rowe, D. J. Armstrong, P. N. Elliott, C. Rostron, and J. E. Hogan, Int. J. Pharm., 71, 95 (1991).

    Article  CAS  Google Scholar 

  43. H. Kim and R. Fassihi, J. Pharm. Sci., 86, 316 (1997).

    Article  PubMed  Google Scholar 

  44. H. Kim and R. Fassihi, J. Pharm. Sci., 86, 323 (1997).

    Article  PubMed  Google Scholar 

  45. C. Y. Gao, D. Y. Wang, and J. C. Shen, Polym. Adv. Technol., 14, 373 (2003).

    Article  CAS  Google Scholar 

  46. G. Chen, T. Ushida, and T. Tateishi, Mat. Sci. Eng. C-Mater., 17, 63 (2001).

    Article  Google Scholar 

  47. G. Dogan, F. Ozyildiz, G. Basal, and A. Uzel, Int. Polym. Process, 28, 143 (2013).

    Article  CAS  Google Scholar 

  48. A. J. Bavariya, A. Norowski, Jr., K. M. Anderson, P. C. Adatrow, F. Garcia-Godoy, S. H. Stein, and J. D. Bumgardner, J. Biomed. Mater. Res. B, 102, 1084 (2014).

    Article  CAS  Google Scholar 

  49. M. E. Frohbergh, A. Katsman, G. R. Botta, P. Lazarovici, C. L. Schauer, U. G. K. Wegst, and P. I. Lelkes, Biomaterials, 33, 9167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Jalaja, D. Naskar, S. C. Kundu, and N. R. James, Carbohydr. Polym., 136, 1098 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. I. M. Helander, E. L. Nurmiaho-Lassila, R. Ahvenainen, J. Rhoades, and S. Roller, Int. J. Food Microbiol., 71, 235 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. L. G. Silva Garcia, G. M. de Melo Guedes, M. L. Queiroz da Silva, D. S. Collares Maia Castelo-Branco, J. J. Costa Sidrim, R. D. A. Cordeiro, M. F. Gadelha Rocha, R. S. Vieira and R. S. Nogueira Brilhante, Carbohydr. Polym., 195, 662 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant no. 51803095), Natural Science Research of Jiangsu Higher Education Institutions of China (grant no. 17KJB540002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiapeng Tang.

Supplementary materials

12221_2019_1092_MOESM1_ESM.pdf

Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Tang, J., Fu, H. et al. Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats. Fibers Polym 20, 698–708 (2019). https://doi.org/10.1007/s12221-019-1092-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-1092-1

Keywords

Navigation