Skip to main content
Log in

Electrospun SnO2/Polyaniline composite nanofibers based low temperature hydrogen gas sensor

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fabrication of tin dioxide/polyaniline (SnO2/PANI) composite nanofibers by electrospinning technique for hydrogen gas sensing at low temperature is reported. Usually, nanofibers of pure or doped metal-oxide as gas sensor require high operating temperature more than 200 °C. Fourier transform infrared (FTIR) and ultraviolet visible (UV-VIS) spectral analysis of as-prepared SnO2/PANI composite nanofibers revealed the incorporation of SnO2 in PANI matrix. Scanning electron micrographs (SEM) showed the increased in diameter of SnO2/PANI composite nanofibers as compared to that of pristine SnO2 nanofibers of average diameter of 200 nm, indicated the encapsulation of PANI on the surface of SnO2 nanocrystallites. The presence of tetragonal and crystalline structure of SnO2 in as-prepared SnO2/PANI composite nanofibers was not affected with the incorporation of PANI as confirmed from X-ray diffraction (XRD) pattern. Compared with the pristine SnO2 nanofibers, the SnO2/PANI composite nanofibers showed improved hydrogen gas sensing nearly at room temperature. The proposed sensing mechanism was systematically co-related to the existence of p-n heterojunction in SnO2/PANI hybrid material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu, W. Zhang, C. Wang, T. C. Wen, and Y. Wei, Prog. Polym. Sci., 36, 671 2011.

    Article  CAS  Google Scholar 

  2. Y. Z. Long, M. M. Li, C. Gu, M. Wan, J. L. Duvail, Z. Liu, and Z. Fan, Prog. Polym. Sci., 36, 1415 2011.

    Article  CAS  Google Scholar 

  3. H. Tai, Y. Jiang, G. Xie, J. Yu, and X. Chen, Sens. Actuator B-Chem., 125, 644 2007.

    Article  CAS  Google Scholar 

  4. J. Qiu, S. Zhang, and H. Zhao, Sens. Actuator B-Chem., 160, 875 2011.

    Article  CAS  Google Scholar 

  5. X. Xu, J. Sun, H. Zhang, Z. Wang, B. Dong, T. Jiang, W. Wang, Z. Li, and C. Wang, Sens. Actuator B-Chem., 160, 858 2011.

    Article  CAS  Google Scholar 

  6. L. Berry and J. Brunet, Sens. Actuator B-Chem., 129, 450 2008.

    Article  CAS  Google Scholar 

  7. N. V. Hieu, H. R. Kim, B. K. Ju, and J. H. Lee, Sens. Actuators B: Chem., 133, 228 2008.

    Article  Google Scholar 

  8. J. Hu, Y. Bando, Q. Liu, and D. Golberg, Adv. Funct. Mater., 13, 493 2003.

    Article  CAS  Google Scholar 

  9. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, and L. Zheng, J. Am. Chem. Soc., 129, 6070 2007.

    Article  CAS  Google Scholar 

  10. X. Y. Xue, Y. J. Chen, Y. G. Wang, and T. H. Wang, Appl. Phys. Lett., 85, 233101 2005.

    Article  Google Scholar 

  11. Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, Sens. Actuators B-Chem., 132, 67 2008.

    Article  CAS  Google Scholar 

  12. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano Lett., 5, 667 2005.

    Article  CAS  Google Scholar 

  13. S. R. Kargirwar, S. R. Thakare, M. D. Choudhary, S. B. Kondawar, and S. R. Dhakate, Adv. Mater. Lett., 2, 397 2011.

    Article  CAS  Google Scholar 

  14. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, Sens. Actuator B-Chem., 157, 329 2011.

    Article  Google Scholar 

  15. S. Srivastava, S. Kumar, V. N. Singh, M. Singh, and Y. K. Vijay, Int. J. Hydrog. Energy, 36, 6343 2011.

    Article  CAS  Google Scholar 

  16. S. B. Kondawar, S. R. Thakare, S. Bompilwar, and V. Khati, Int. J. Mod. Phys. B, 23, 3297 2009.

    Article  CAS  Google Scholar 

  17. N. G. Deshpande, Y. G. Gudage, R. Sharma, J. C. Vyas, J. B. Kim, and Y. P. Lee, Sens. Actuator B-Chem., 138, 76 2009.

    Article  CAS  Google Scholar 

  18. S. B. Kondawar, S. A. Acharya, and S. R. Dhakate, Adv. Mater. Lett., 2, 362 2011.

    CAS  Google Scholar 

  19. A. K. Sharma, Y. Sharma, R. Malhotra, and J. K. Sharma, Adv. Mater. Lett., 3, 82 2012.

    Article  Google Scholar 

  20. P. M. Ashraf, K. V. Lalitha, and L. Edwin, Sens. Actuators B-Chem., 208, 369 2015.

    Article  CAS  Google Scholar 

  21. H. M. Moghaddam and S. Nasirian, Appl. Surf. Sci., 317, 117 2014.

    Article  Google Scholar 

  22. S. Nasirian and H. M. Moghaddam, Int. J. Hydrog. Energy, 39, 630 2014.

    Article  CAS  Google Scholar 

  23. X. Xia, D. Chao, X. Qi, Q. Xiong, Y. Zhang, J. Tu, H. Zhang, and H. Jin Fan, Nano Lett., 13, 4562 2013.

    Article  CAS  Google Scholar 

  24. S. Nasirian and H. M. Moghaddam, Appl. Surf. Sci., 328, 395 2015.

    Article  CAS  Google Scholar 

  25. S. Matsushima, T. Maekawa, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuator B-Chem., 9, 71 1992.

    Article  CAS  Google Scholar 

  26. Y. Fong and J. B. Schlenoff, Polymer, 36, 639 1995.

    Article  CAS  Google Scholar 

  27. C. W. Hung, H. L. Lin, H. I. Chen, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. M. Chuang, and W. C. Liu, Sens. Actuator BChem., 122, 81 2007.

    Article  CAS  Google Scholar 

  28. S. Wang, Z. Tan, Y. Li, L. Sun, and T. Zhang, Thermochim. Acta, 441, 191 2006.

    Article  CAS  Google Scholar 

  29. A. Mostafaei and A. Zolriasatein, Prog. Nat. Sci., 22, 273 2012.

    Article  Google Scholar 

  30. L. Shi, X. Wang, L. Lu, X. Yang, and X. Wu, Synth. Met., 159, 2525 2009.

    Article  CAS  Google Scholar 

  31. E. M. Scher, A. G. MacDiarmid, S. K. Monahar, J. G. Masters, Y. Sun, and X. Tang, Synth. Met., 41, 735 1991

    Article  Google Scholar 

  32. A. G. MacDiarmid and A. J. Epstein, Synth. Met., 65, 103 1994.

    Article  CAS  Google Scholar 

  33. H. Jiang, Y. Geng, J. Li, and F. Wang, Synth. Met., 84, 125 1997.

    Article  CAS  Google Scholar 

  34. B. J. Kim, S. G. Oh, M. G. Han, and S. S. Im, Synth. Met., 122, 297 2001.

    Article  CAS  Google Scholar 

  35. H. Xia and Q. Wang, J. Appl. Polym. Sci., 87, 1811 2003.

    Article  CAS  Google Scholar 

  36. S. Deivanayaki, V. Ponnuswamy, S. Ashokan, P. Jayamurugan, and R. Mariappan, Mater. Sci. Semicond. Process., 16, 554 2013.

    Article  CAS  Google Scholar 

  37. A. Katoch, M. Burkhart, T. Hwang, and S. S. Kim, Chem. Eng. J., 192, 262 2012.

    Article  CAS  Google Scholar 

  38. S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, IEEE Trans. Nanotechnol., 7, 754 2008.

    Article  Google Scholar 

  39. S. Virji, R. B. Kaner, and B. H. Weiller, J. Phys. Chem. B, 110, 22266 2006.

    Article  CAS  Google Scholar 

  40. M. C. O. Baker, “Applications of Polyaniline Nanofibers and Nanocomposites”, ProQuest, UMI Dissertations Publishing, California, 2008.

    Google Scholar 

  41. S. Bhadra, N. K. Singha, and D. Khastgir, Synth. Met., 156, 1148 2006.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Baburao Kondawar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.J., Sonwane, N.D. & Kondawar, S.B. Electrospun SnO2/Polyaniline composite nanofibers based low temperature hydrogen gas sensor. Fibers Polym 16, 1527–1532 (2015). https://doi.org/10.1007/s12221-015-5222-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5222-0

Keywords

Navigation