Skip to main content
Log in

Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we introduce the notion of tangent space \({\mathcal {T}}_{o} {\mathcal {G}}\) of a (not necessary smooth) subgroup \({\mathcal {G}}\) of the diffeomorphism group \({\mathcal {D}}i\!f\!f^{\infty }(M)\) of a compact manifold M. We prove that \({\mathcal {T}}_{o} {\mathcal {G}}\) is a Lie subalgebra of the Lie algebra of smooth vector fields on M. The construction can be generalized to subgroups of any (finite- or infinite-dimensional) Lie groups. The tangent Lie algebra \({\mathcal {T}}_{o} {\mathcal {G}}\) introduced this way is a generalization of the classical Lie algebra in the smooth cases. As a working example we discuss in detail the tangent structure of the holonomy group and fibered holonomy group of Finsler manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    Article  MathSciNet  Google Scholar 

  2. Borel, A., Lichnerowicz, A.: Groupes d’holonomie des variétés riemanniennes. C. R. Acad. Sci. Paris 234, 1835–1837 (1952)

    MathSciNet  MATH  Google Scholar 

  3. Bryant, R.: Recent advances in the theory of holonomy. Astérisque, 266:Exp. No. 861, 5, 351–374 (2000). Séminaire Bourbaki, vol. 1998/99

  4. Grifone, J.: Structure presque-tangente et connexions. Inst. Ann. Inst. Fourier (Grenoble) 22(1), 287–334 (1972)

    Article  MathSciNet  Google Scholar 

  5. Hubicska, B., Muzsnay, Z.: The holonomy groups of projectively flat Randers two-manifolds of constant curvature (preprint) (2017)

  6. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  7. Kozma, L.: On holonomy groups of Landsberg manifolds. Tensor (N.S.) 62(1), 87–90 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Mauhart, M., Michor, P.W.: Commutators of flows and fields. Arch. Math. (Brno) 28(3–4), 229–236 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Michor, P.W.: Gauge Theory for Fiber Bundles. Monographs and Textbooks in Physical Science, vol. 19. Lecture Notes. Bibliopolis, Naples (1991)

  10. Muzsnay, Z., Nagy, P.T.: Tangent Lie algebras to the holonomy group of a Finsler manifold. Commun. Math. 19(2), 137–147 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Muzsnay, Z., Nagy, P.T.: Finsler manifolds with non-Riemannian holonomy. Houst. J. Math. 38(1), 77–92 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Muzsnay, Z., Nagy, P.T.: Witt algebra and the curvature of the Heisenberg group. Commun. Math. 20(1), 33–40 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Muzsnay, Z., Nagy, P.T.: Characterization of projective finsler manifolds of constant curvature having infinite dimensional holonomy group. Publ. Math. Debrecen 84(1–2), 17–28 (2014)

    Article  MathSciNet  Google Scholar 

  14. Muzsnay, Z., Nagy, P.T.: Finsler 2-manifolds with maximal holonomy group of infinite dimension. Differ. Geom. Appl. 39, 1–9 (2015)

    Article  MathSciNet  Google Scholar 

  15. Omori, H.: Infinite-Dimensional Lie Groups. Translations of Mathematical Monographs, vol. 158. American Mathematical Society, Providence, RI (1997). Translated from the 1979 Japanese original and revised by the author

  16. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. I, 2nd edn. Publish or Perish, Inc., Wilmington, Del. (1979)

    MATH  Google Scholar 

  17. Szabó, Z.I.: Positive definite Berwald spaces. Structure theorems on Berwald spaces. Tensor (N.S.) 35(1), 25–39 (1981)

    MathSciNet  MATH  Google Scholar 

  18. Szilasi, J., Lovas, R.L., Kertész, D.C.: Connections, Sprays and Finsler Structures. World Scientific, Hackensack, NJ (2014)

    MATH  Google Scholar 

  19. Wojtyński, W.: Groups of strings. J. Lie Theory 13(2), 359–382 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the constructive comments and recommendations which contributed to improving the paper. The research of Z. Muzsnay was supported in part by the projects EFOP-3.6.1-16-2016-00022 and EFOP-3.6.2-16-2017-00015, co-financed by the European Union and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Muzsnay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hubicska, B., Muzsnay, Z. Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory. J Geom Anal 30, 107–123 (2020). https://doi.org/10.1007/s12220-018-00138-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-018-00138-3

Keywords

Mathematics Subject Classification

Navigation