Skip to main content
Log in

Design considerations for effective thermal management in mobile nanotweezers

  • Research Paper
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Controlled manipulation of nanoscale objects in fluids is relevant to both fundamental studies and technological advances in nanotechnology. While standard techniques of nanomanipulation, such as optical and plasmonic tweezers have limitations in simultaneous trapping and transport of nanoscale cargo, magnetically driven plasmonic nanorobots under optical illumination provide a promising solution. These so called mobile nanotweezers (MNT) use strongly localized electromagnetic field near plasmonic nanostructures to trap objects with high efficiency and can simultaneously be driven by magnetic fields to selectively trap, transport and release colloidal cargo. Upon illumination, apart from strong optical gradient forces due to local electric field enhancement, additional fluidic forces arise due to the heat generated by absorption of light. Here, we present a method to understand and engineer thermally induced fluidic forces in mobile nanotweezers. The temperature enhancement and associated thermofluidic forces are studied as a function of MNT geometry. We also discuss illumination at wavelengths slightly detuned from plasmon resonance frequency, which produces sufficient field enhancement with negligible generation of heat, and therefore much reduced thermophoretic and convective forces. This allowed us to engineer thermoplasmonic forces in MNTs for enhanced trapping performance and diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang J (2013) Nanomachines: fundamentals and applications. (John Wiley & Sons)

  2. Petit T, Zhang L, Peyer KE, Kratochvil BE, Nelson BJ (2012) Selective trapping and manipulation of microscale objects using Mobile microvortices. Nano Lett 12:156–160

    Article  Google Scholar 

  3. Wang J (2012) Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab Chip 12:1944

    Article  Google Scholar 

  4. Li J, Esteban-Fernández de Ávila, B., Gao W, Zhang L & Wang J (2017) Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification. Sci. Robot. 2, eaam6431

  5. Ceylan H, Giltinan J, Kozielski K, Sitti M (2017) Mobile microrobots for bioengineering applications. Lab Chip 17:1705–1724

    Article  Google Scholar 

  6. Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic Motors for Transport of colloidal cargo. Nano Lett 8:1271–1276

    Article  Google Scholar 

  7. Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic Nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130:8164–8165

    Article  Google Scholar 

  8. Huang TY, Sakar MS, Mao A, Petruska AJ, Qiu F, Chen XB, Kennedy S, Mooney D, Nelson B (2015) 3D printed microtransporters: compound micromachines for spatiotemporally controlled delivery of therapeutic agents. Adv Mater 27:6644–6650

    Article  Google Scholar 

  9. Huang T-Y et al (2014) Generating mobile fluidic traps for selective three-dimensional transport of microobjects. Appl Phys Lett 105:114102

    Article  Google Scholar 

  10. Zhou Q, Petit T, Choi H, Nelson BJ, Zhang L (2017) Dumbbell fluidic tweezers for dynamical trapping and selective transport of microobjects. Adv Funct Mater 27:1604571

    Article  Google Scholar 

  11. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288

    Article  Google Scholar 

  12. Huang TJ et al (2018) Acoustic tweezers for the life sciences. Nat Methods 15:1021–1028

    Article  Google Scholar 

  13. Righini M, Zelenina A & Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 61–62. https://doi.org/10.1109/OMEMS.2007.4373840

  14. Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2:365–370

    Article  Google Scholar 

  15. Juan ML, Gordon R, Pang Y, Eftekhari F, Quidant R (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5:915–919

    Article  Google Scholar 

  16. Pang Y, Gordon R (2011) Optical trapping of a single protein. Nano Lett 12:6–10

    Google Scholar 

  17. Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245

    Article  Google Scholar 

  18. Mandal P, Patil G, Kakoty H, Ghosh A (2018) Magnetic active matter based on helical propulsion. Acc Chem Res 51:2689–2698

    Article  Google Scholar 

  19. Ghosh S, Ghosh A (2018) Mobile nanotweezers for active colloidal manipulation. Sci Robot 3:eaaq0076

    Article  Google Scholar 

  20. Baffou G, Quidant R, García de Abajo FJ (2010) Nanoscale control of optical heating in complex Plasmonic systems. ACS Nano 4:709–716

    Article  Google Scholar 

  21. Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7:171–187

    Article  Google Scholar 

  22. Piazza R (2004) Thermal forces : colloids in temperature gradients. J Phys Condens Matter 16:S4195–S4211

    Article  Google Scholar 

  23. Ghosh S, Ghosh A (2018) December. Photothermal effects in mobile nanotweezers. In 2018 4th IEEE International Conference on Emerging Electronics (ICEE) (pp. 1–4). IEEE.

  24. Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:1–4

    Article  Google Scholar 

  25. Baffou G (2017) Thermoplasmonics. (World Scientific)

  26. Piazza R, Parola A (2008) Thermophoresis in colloidal suspensions. J Phys Condens Matter 20:153102

    Article  Google Scholar 

  27. Guyon E (2001) Physical hydrodynamics. (Oxford University Press)

  28. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682

    Article  Google Scholar 

  29. Braibanti M, Vigolo D, Piazza R (2008) Does thermophoretic mobility depend on particle size? Phys Rev Lett 100:1–4

    Article  Google Scholar 

  30. Lin L et al (2017) Opto-thermophoretic assembly of colloidal matter. Sci Adv 3:e1700458

    Article  Google Scholar 

  31. Lin L, Peng X, Mao Z, Wei X, Xie C, Zheng Y (2017) Interfacial-entropy-driven thermophoretic tweezers. Lab Chip 17:3061–3070

    Article  Google Scholar 

  32. Venugopalan PL, Jain S, Shivashankar S, Ghosh A (2018) Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10:2327–2332

    Article  Google Scholar 

  33. Hawkeye MM, Brett MJ (2007) Glancing angle deposition: Fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol A Vacuum, Surfaces, Film 25:1317

    Article  Google Scholar 

  34. Schamel D, Pfeifer M, Gibbs JG, Miksch B, Mark AG, Fischer P (2013) Chiral colloidal molecules and observation of the propeller effect. J Am Chem Soc 135:12353–12359

    Article  Google Scholar 

  35. Ghosh A, Paria D, Rangarajan G, Ghosh A (2014) Velocity fluctuations in helical propulsion: how small can a propeller be. J Phys Chem Lett 5:62–68

    Article  Google Scholar 

  36. Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photo-induced heating of nanoparticle arrays photo-induced heating of nanoparticle arrays. ACS Nano 7:6478–6488

    Article  Google Scholar 

  37. Wright WH, Sonek GJ, Berns MW (1994) Parametric study of the forces on microspheres held by optical tweezers. Appl Opt 33:1735

    Article  Google Scholar 

  38. Dechant A (2019) Estimating the free-space diffusion coefficient of trapped particles. EPL 125

  39. Ghosh S, Ghosh A (2019) All optical dynamic nanomanipulation with active colloidal tweezers. Nat Commun 10:4191

    Article  Google Scholar 

  40. Shoji T et al (2013) Reversible photoinduced formation and manipulation of a two-dimensional closely packed assembly of polystyrene nanospheres on a metallic nanostructure. J Phys Chem C 117:2500–2506

    Article  Google Scholar 

  41. Ghosh A, Ghosh S (2019) Strategies for active colloidal manipulation with plasmonic tweezers (Conference Presentation). in Optical Trapping and Optical Micromanipulation XVI (eds. Dholakia, K. & Spalding, G. C.) 11083, 41 (SPIE)

  42. Venugopalan PL et al (2014) Conformal Cytocompatible ferrite coatings facilitate the realization of a Nanovoyager in human blood. Nano Lett 14:1968–1975

    Article  Google Scholar 

  43. Pal M et al (2018) Maneuverability of magnetic Nanomotors inside living cells. Adv Mater 30:1800429

    Article  Google Scholar 

  44. Roxworthy BJ et al (2014) Plasmonic optical trapping in biologically relevant media. PLoS One 9:e93929

    Article  Google Scholar 

  45. Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y (2015) Plasmofluidics: merging light and fluids at the micro-/Nanoscale. Small 11:4423–4444

    Article  Google Scholar 

  46. Kayani AA, Khoshmanesh K, Ward SA, Mitchell A, Kalantar-zadeh K (2012) Optofluidics incorporating actively controlled micro- and nano-particles. Biomicrofluidics 6

  47. Yan X et al (2017) Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2:eaaq1155

    Article  Google Scholar 

  48. Ghosh A et al (2018) Helical Nanomachines as Mobile viscometers. Adv Funct Mater 28:1705687

    Article  Google Scholar 

Download references

Acknowledgements

S.G thanks Arijit Ghosh, Debayan Dasgupta, Malay Pal, Praneet Prakash and Pranay Mandal for helpful discussions. We thank Department of Biotechnology, India for funding this research. We also acknowledge funding from MHRD, MeitY and DST Nano Mission for supporting the facilities at CeNSE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Souvik Ghosh or Ambarish Ghosh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(AVI 2733 kb)

ESM 2

(AVI 3041 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Ghosh, A. Design considerations for effective thermal management in mobile nanotweezers. J Micro-Bio Robot 16, 33–42 (2020). https://doi.org/10.1007/s12213-020-00123-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-020-00123-6

Keywords

Navigation