Skip to main content

Advertisement

Log in

Texture Engineering to Boost the Thermoelectric Properties

  • Perspective
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Around 60% of useful energy is wasted in industry, homes, or transportation. Therefore, there has been increasing attention on thermoelectric materials for their ability to harvest waste heat into useful energy. The efficiency of a thermoelectric material depends on its electrical conductivity, Seebeck coefficient, and thermal conductivity in a conflicting manner which results in efficiency optimization challenges. Single crystals and polycrystalline layered materials have comparatively better thermoelectric and mechanical properties in a certain direction. Texture engineering is a special strategy that allows the exploitation of superior material properties in a specific direction. Texturing could be achieved by various sintering and deformation methods, which yield defects improving thermoelectric and mechanical properties. The results show that for (Bi,Sb)2Te3, Bi2(Se,Te)3, CuSbSe2, and SnSe, significant enhancement in the thermoelectric figure of merit is achieved by enhancing the preferred orientation. Texture engineering provides a wide range of strategies to elevate the zT of anisotropic materials to values comparable to those of their single crystalline counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [13]. Copyright© 2017 American Chemical Society

Fig. 4

Similar content being viewed by others

References

  1. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  2. Luo Y, Ma Z, Hao S et al (2022) Thermoelectric performance of the 2D Bi2Si2Te6 semiconductor. J Am Chem Soc 144:1445–1454

    Article  Google Scholar 

  3. Tan G, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149

    Article  Google Scholar 

  4. Yan Q, Kanatzidis MG (2022) High-performance thermoelectrics and challenges for practical devices. Nat Mater 21:503–513

    Article  Google Scholar 

  5. Chen ZG, Han G, Yang L et al (2012) Nanostructured thermoelectric materials: current research and future challenge. Prog Nat Sci 22:535–549

    Article  Google Scholar 

  6. Kanatzidis MG (2010) Nanostructured thermoelectrics: the new paradigm? Chem Mater 22:648–659

    Article  Google Scholar 

  7. Lu W, He T, Li S (2020) Thermoelectric performance of nanostructured In/Pb codoped SnTe with band convergence and resonant level prepared via a green and facile hydrothermal method. Nanoscale 12:5857–5865

    Article  Google Scholar 

  8. Dresselhaus MS, Chen G, Tang MY et al (2007) New directions for low-dimensional thermoelectric materials. Adv Mater 19:1043–1053

    Article  Google Scholar 

  9. Jia N, Tan XY, Xu J et al (2022) Achieving enhanced thermoelectric performance in multiphase materials. Acc Mater Res 3:237–246

    Article  Google Scholar 

  10. Zhang C, de la Mata M, Li Z et al (2016) Enhanced thermoelectric performance of solution-derived bismuth telluride-based nanocomposites via liquid–phase sintering. Nano Energy 30:630–638

    Article  Google Scholar 

  11. Jiang Q, Yan H, Khaliq J et al (2014) Large zT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J Mater Chem 2:5785–5790

    Article  Google Scholar 

  12. Zhao LD, Chang C, Tan G et al (2016) SnSe: a remarkable new thermoelectric material. Energy Environ Sci 9:3044–3060

    Article  Google Scholar 

  13. Liu Y, Zhang Y, Ortega S et al (2018) Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2–xTe3 nanocrystal building blocks. Nano Lett 18:2557–2563

    Article  Google Scholar 

  14. Liu Y, Zhang Y, Lim KH et al (2018) High thermoelectric performance in crystallographically textured n-Type Bi2Te3–xSex produced from asymmetric colloidal nanocrystals. ACS Nano 12:7174–7184

    Article  Google Scholar 

  15. Zhou C, Lee YK, Yu Y, Byun S et al (2021) Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat Mater 20:1378–1384

    Article  Google Scholar 

  16. Zhao LD, Lo SH, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377

    Article  Google Scholar 

  17. Shang PP, Dong J, Pei J et al (2019) Highly textured n-type SnSe polycrystals with enhanced thermoelectric performance. Research 9253132:1–10

    Google Scholar 

  18. Sui J, Li J, He J et al (2013) Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy Environ Sci 6:2916–2920

    Article  Google Scholar 

  19. Zheng Y, Slade TJ, Hu L et al (2021) Defect engineering in thermoelectric materials: what have we learned? Chem Soc Rev 50:9022–9054

    Article  Google Scholar 

  20. Wang X, Huang X, Wong ZM et al (2022) Gallium-doped zinc oxide nanostructures for tunable transparent thermoelectric films. ACS Appl Nano Mater 5:8631–8639

    Article  Google Scholar 

  21. Zhang C, Ng H, Li Z et al (2017) Minority carrier blocking to enhance the thermoelectric performance of solution-processed BixSb2–xTe3 nanocomposites via a liquid–phase sintering process ACS Appl. Mater Interfaces 9:12501–12510

    Article  Google Scholar 

  22. Im HJ, Koo BK, Kim MS et al (2019) Solvothermal synthesis of Sb2Te3 nanoplates under various synthetic conditions and their thermoelectric properties. Appl Surf Sci 475:510–514

    Article  Google Scholar 

  23. Liu WD, Shi XL, Lin ZJ et al (2020) Morphology and texture engineering enhancing thermoelectric performance of solvothermal synthesized ultralarge SnS microcrystal ACS Appl. Energy Mater 3:2192–2199

    Google Scholar 

  24. German RM. (2014) Chapter Ten—sintering with external pressure In Sintering: from empirical observations to scientific principles. Elsevier, Singapore, pp. 305–354

  25. Hu C, Li F, Qu D et al (2014) Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites. In: Low IM (ed) Advances in ceramic matrix composites. Elsevier, Cambridge, pp 164–189

    Chapter  Google Scholar 

  26. Guillon O, Gonzalez-Julian J, Dargatz B et al (2014) Field assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments. Adv Eng Mater 16:830–849

    Article  Google Scholar 

  27. Kitagawa H, Kurata A, Araki H et al (2010) Effect of deformation temperature on texture and thermoelectric properties of Bi0.5Sb1.5Te3 prepared by hot-press deformation. J Electron Mater 39:1692–1695

    Article  Google Scholar 

  28. Luo Y, Zheng Y, Luo Z et al (2018) N-Type SnSe2 oriented-nanoplate-based pellets for high thermoelectric performance. Adv Energy Mater 8:1–8

    Article  Google Scholar 

  29. Ivanov O, Yaprintsev M, Vasil’ev A (2020) Comparative analysis of the thermoelectric properties of the non-textured and textured Bi1.9Gd0.1Te3 compounds. Solid State Chem 290:1–10

    Article  Google Scholar 

  30. Luo Y, Du C, Liang Q et al (2018) Enhancement of thermoelectric performance in CuSbSe2 nanoplate-based pellets by texture engineering and carrier concentration optimization. Small 14:1–9

    Google Scholar 

  31. Wu Y, Li W, Faghaninia A et al (2017) Promising thermoelectric performance in van der Waals layered SnSe2 Mater. Today Phys 3:127–136

    Google Scholar 

  32. Shen JJ, Zhu TJ, Zhao XB et al (2010) Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top–down route and improved thermoelectric properties. Energy Environ Sci 3(10):519–1523

    Article  Google Scholar 

  33. Nagami Y, Matsuoka K, Akao T et al (2014) Preparation and characterization of Bi0.4Sb1.6Te3 bulk thermoelectric materials. J Electron Mater 43:2262–2268

    Article  Google Scholar 

  34. Kodukula S, Kokkomäki H, Puukko E et al (2021) Influence of hot rolling finishing temperature on texture and ridging resistance in stabilized ferritic stainless steels. Steel Res Int 92:1–11

    Google Scholar 

  35. Yan WD, Fu GS, Chen HL et al (2019) Texture characteristics of 1235 aluminum alloy after rolling. Mater 53:821–825

    Google Scholar 

  36. Yang G, Sang L, Mitchell DRG et al (2022) Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy. J Chem Eng 428:1–9

    Article  Google Scholar 

  37. Srinivasan R, Gothard N, Spowart J (2010) Improvement in thermoelectric properties of an n-type bismuth telluride (Bi2Se0.3Te2.7) due to texture development and grain refinement during hot deformation. Mater Lett 64:1772–1775

    Article  Google Scholar 

  38. Witting IT, Chasapis TC, Ricci F et al (2019) The thermoelectric properties of bismuth telluride. Adv Electron Mater 5:1–20

    Article  Google Scholar 

  39. Hu L, Wu H, Zhu T et al (2015) Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv Energy Mater 5:1–13

    Article  Google Scholar 

  40. Pan Y, Aydemir U, Grovogui J et al (2018) Melt-centrifuged (Bi, Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv Mater 30:1–7

    Article  Google Scholar 

  41. Chang C, Wu M, He D et al (2018) 3D charge and 2D phonon transports leading to high out-of-plane zT in n-type SnSe crystals. Science 360:778–783

    Article  Google Scholar 

  42. Wang X, Xu J, Liu GQ et al (2017) Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Mater 9:e426–e426

    Article  Google Scholar 

  43. Heo SH, Yoo J, Lee H et al (2022) Solution-processed hole-doped SnSe thermoelectric thin-film devices for low-temperature power generation. ACS Energy Lett 7:2092–2101

    Article  Google Scholar 

  44. Fu Y, Xu J, Liu GQ et al (2016) Enhanced thermoelectric performance in p-type polycrystalline SnSe benefiting from texture modulation. J Mater Chem C 4:1201–1207

    Article  Google Scholar 

  45. Zhang Y, Liu Y, Lim KH et al (2018) Tin diselenide molecular precursor for solution-processable thermoelectric materials. Angew Chem Int Ed 57:17063–17068

    Article  Google Scholar 

  46. Hu LP, Liu XH, Xie HH et al (2012) Improving thermoelectric properties of n-type bismuth–telluride-based alloys by deformation-induced lattice defects and texture enhancement. Acta Mater 60:4431–4437

    Article  Google Scholar 

  47. Wang Y, Fu C, Zhu T et al (2013) Hot deformation induced defects and performance enhancement in FeSb2 thermoelectric materials. J Appl Phys 114:1–5

    Article  Google Scholar 

  48. Duan S, Man N, Xu J et al (2019) Thermoelectric (Bi, Sb)2Te3–Ge0.5Mn0.5Te composites with excellent mechanical properties. J Mater Chem A 7:9241–9246

    Article  Google Scholar 

  49. Kenfaui D, Chateigner D, Gomina M et al (2010) Texture, mechanical and thermoelectric properties of Ca3Co4O9 ceramics. J Alloys Compd 490:472–479

    Article  Google Scholar 

  50. Shen JJ, Yin ZZ, Yang SH et al (2011) Improved thermoelectric performance of p-type bismuth antimony telluride bulk alloys prepared by hot forging. J Electron Mater 4:1095–1099

    Article  Google Scholar 

  51. Zhu T, Xu Z, He J (2013) Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials. J Mater Chem A 1:11589–11594

    Article  Google Scholar 

  52. Qin C, Jin M, Zhang R et al (2021) Preparation and thermoelectric properties of ZnTe-doped Bi0.5Sb1.5Te3 single crystal. Mater Lett 292:1–4

    Article  Google Scholar 

  53. Romanenko AI, Chebanova GE, Drozhzhin MV et al (2021) Thermoelectric properties and phase transition of doped single crystals and polycrystals of Bi2Te3. J Am Ceram Soc 104:6242–6253

    Article  Google Scholar 

  54. Wu H, Lu X, Wang G et al (2018) Sodium-doped tin sulfide single crystal: a nontoxic earth-abundant material with high thermoelectric performance. Adv Energy Mater 8:1–8

    Article  Google Scholar 

  55. Pham AT, Vu TH, Nguyen QV et al (2021) Br-doped n-type SnSe2: single-crystal growth and thermoelectric properties. ACS Appl Energy Mater 4:2908–2913

    Article  Google Scholar 

  56. Nguyen VQ, Kim J, Cho S (2018) A review of SnSe: growth and thermoelectric properties. J Korean Phys Soc 72:841–857

    Article  Google Scholar 

  57. Kenfaui D, Chateigner D, Gomina M et al (2015) Volume texture and anisotropic thermoelectric properties in Ca3Co4O9 bulk materials. Mater 2:637–646

    Google Scholar 

  58. Delorme F, Diaz-Chao P, Guilmeau E et al (2015) Thermoelectric properties of Ca3Co4O9–Co3O4 composites. Ceram Int 41:10038–10043

    Article  Google Scholar 

  59. Rhyee JS, Lee KH, Lee SM, Cho E et al (2009) Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals. Nature 459:965–968

    Article  Google Scholar 

  60. Wu J, Chen Y, Wu J et al (2018) Perspectives on thermoelectricity in layered and 2D materials. Adv Electron Mater 4:1–19

    Article  Google Scholar 

  61. Simonson JW, Poon SJ (2010) Applying an electron counting rule to screen prospective thermoelectric alloys: the thermoelectric properties of YCrB4 and Er3CrB7-type phases. J Alloys Compd 504:265–272

    Article  Google Scholar 

  62. Kinemuchi Y, Kaga H, Tanaka S et al (2007) Zinc oxide ceramics with high mobility as n-type thermoelectric materials MSF. Trans Tech Publications Ltd, Zurich, pp 561–565

    Google Scholar 

  63. Shi ZM, Zhang P, Lou ZH et al (2021) Grain orientation evolution and thermoelectric properties of textured (Ca0.87Ag0.1La0.03)(3)Co4O9 ceramics prepared by tape casting. Ceram Int 47:8365–8374

    Article  Google Scholar 

  64. He ZH, Ma ZG, Zhong FQ et al (1998) Investigation of the off-diagonal thermoelectric effect on textured YBa2Cu3O7-δ. J Supercond 11:203–207

    Article  Google Scholar 

  65. Diez JC, Rasekh S, Constantinescu G et al (2015) High thermoelectric performances in co-oxides processed by a laser floating zone technique. Mater 2:654–660

    Google Scholar 

  66. Lan JL, Lin YH, Li GJ et al (2010) High-temperature electrical transport behaviors of the layered Ca2Co2O5-based ceramics. Appl Phys Lett 96:1–8

    Article  Google Scholar 

  67. Bayesteh S, Sailler S, Schlorb H et al (2022) Mobility-enhanced thermoelectric performance in textured nanograin Bi2Se3, effect on scattering and surface-like transport. Mater 24:1–8

    Google Scholar 

  68. Hedegaard EMJ, Johnsen S, Bjerg L et al (2014) Functionally graded Ge1–xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem Mater 26:4992–4997

    Article  Google Scholar 

  69. Cha SK, Im S, Kim YS (2022) Room temperature Cmcm phase of CaxSn1–xSe for thermoelectric energy conversion. ACS Appl Energy Mater 5:2067–2073

    Article  Google Scholar 

  70. Cao J, Chien SW, Tan XY et al (2021) Realizing zT values of 2.0 in cubic GeTe. ChemNanoMat 7:476–482

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the A*STAR’s Science and Engineering Research Council.

Sustainable Hybrid Lighting System for Controlled Environment Agriculture Program: A19D9a0096. Q. Yan acknowledges Singapore MOE AcRF Tier 2 under Grant (No. 2018-T2-1-010), A. S. acknowledges funding from the A*STAR’s Career Development Award (No. C210112022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Qingyu Yan.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saglik, K., Tan, X., Suwardi, A. et al. Texture Engineering to Boost the Thermoelectric Properties. Trans. Tianjin Univ. 29, 189–195 (2023). https://doi.org/10.1007/s12209-023-00354-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-023-00354-1

Keywords

Navigation