Skip to main content
Log in

Molecular simulation study on adhesions and deformations for Polymethyl Methacrylate (PMMA) resist in nanoimprint lithography

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The NIL (nanoimprint lithography) process is explored through numerical simulation, utilizing MD (molecular dynamics), with a focus on the resin deformations and the adhesion between the resin material and the tool. For the force-field of the Polymethyl Methacrylate (PMMA), used for the resin material, a united atom model is employed. For temperature control in the MD simulation, the recursive multiple chains of the Nosé-Poincaré thermostat is applied. The deformation and adhesion in the NIL process are explored from the mechanics viewpoint based on the present MD results. In particular, the adhesion behavior of a self-assembly monolayer (SAM) in the stamp-releasing stage is discussed in connection with the monolayer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Y. Chou, P. R. Krauss and P. J. Renstrom, Nanoim-print Lithography, J. Vac. Sci. Technol. B, 14 (1996) 4129–4133.

    Article  Google Scholar 

  2. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, Sub-10 nm Imprint Lithography and Applications, J. Vac. Sci. Technol. B, 15 (2007) 2897–2904.

    Article  Google Scholar 

  3. S. Y. Chou, C. Keimel and J. Gu, Ultrafast and direct imprint of nanostructures in silicon, Nature, 417 (2002) 835–837.

    Article  Google Scholar 

  4. M. Colburn, I. Suez, B. J. Choi, M. Meissl, T. Bailey, S. V. Sreenivasan, J. G. Ekerdt and C. G. Willson, Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers, J. Vac. Sci. Technol. B, 19 (2001) 2685–2689.

    Article  Google Scholar 

  5. T. Bailey, B. Smith, B. J. Choi, M. Colburn, M. Meissl, S. V. Sreenivasan, J. G. Ekerdt and C. G. Willson, Step and flash imprint lithography: Template surface treatment and defect analysis, J. Vac. Sci. Technol. B, 18 (2000) 3572–3577.

    Article  Google Scholar 

  6. H.-C. Scheer, H. Schulz, T. Hoffmann and C. M. Sotomayor Torres, Problems of the nanoimprinting technique for nanometer scale pattern definition, J. Vac. Sci. Technol. B, 16 (1998) 3917–3921.

    Article  Google Scholar 

  7. L. J. Heyderman, H. Schift, C. David, J. Gobrecht and T. Schweizer, Flow behaviour of thin polymer films used for hot embossing Lithography, Microelectronic Eng., 54 (2000) 229–245.

    Article  Google Scholar 

  8. L. J. Guo, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys., 37 (2004) R123–R141.

    Article  Google Scholar 

  9. Y. Hirai, S. Yoshida, N. Takagi, Y. Tanaka, H. Yabe, K. Sasaki, H. Sumitani and K. Yamamoto, High aspect pattern fabrication by nano imprint lithography using fine diamond mold, Jpn. J. Appl. Phys., 42 (2003) 3863–3866.

    Article  Google Scholar 

  10. Y. Hirai, T. Konishi, T. Yoshikawa and S. Yoshida, Simulation and experimental study of polymer deformation in nanoimprint lithography, J. Vac. Sci. Technol. B, 22 (2004) 3288–3293.

    Article  Google Scholar 

  11. Y. Hirai, S. Yoshida and N. Takagi, Defect analysis in thermal nanoimprint lithography, J. Vac. Sci. Technol. B, 21 (2003) 2765–2770.

    Article  Google Scholar 

  12. S. Yang, S. Yu and M. Cho, Molecular dynamics study to identify mold geometry effect on the pattern transfer in thermal nanoimprint lithography, Jpn. J. Appl. Phys., 48 (2009) 06FH03.

    Article  Google Scholar 

  13. K. Choi and M. Cho, Fully Flexible Solid Unit Cell Simulation with Recursive Thermostat Chains, J. Chem. Phys., 125 (2006) 184105–184114.

    Article  Google Scholar 

  14. K. Jung and M. Cho, An explicit algorithm for fully flexible unit cell simulation with recursive thermostat chains, J. Chem. Phys., 129 (2008) 164116–164126.

    Article  Google Scholar 

  15. Y. R. Jeng, P. C. Tsai and T. H. Fang, The molecular dynamical studies of atomic-scale tribological characteristics for different sliding systems, Tribo. Lett., 18 (2005) 315–330.

    Article  Google Scholar 

  16. S. Jun, Y. Lee, S. Y. Kim and S. Im, Large-scale molecular dynamics simulations of AI(111)nanoscratching, Nanotechnology, 15 (2004) 1169–1174.

    Article  Google Scholar 

  17. Y. S. Woo, D. E. Lee and W. I. Lee, Molecular dynamic studies on deformation of polymer resist during thermal nano imprint lithographic process, Tribo. Lett., 36 (2009) 1573–2711.

    Google Scholar 

  18. Q. C. Hsu, C. D. Wu and T. H. Fang, Studies on nanoimprint process parameters of copper by molecular dynamics analysis, Comp. Mater. Sci., 34 (2005) 314–322.

    Article  Google Scholar 

  19. J.-H. Kang, K.-S. Kim and K.-W. Kim, Molecular dynamics study of pattern transfer in nanoimprint lithography, Tribo. Lett., 25 (2007) 93–102.

    Article  MathSciNet  Google Scholar 

  20. D. L. Patrick, J. F. Flanagan IV, P. Kohl and R. M. Lynden-Bell, Atomistic molecular dynamics simulations of chemical force microscopy, J. Am. Chem. Soc., 125 (2003) 6762–6773.

    Article  Google Scholar 

  21. Y. Leng and S. Jiang, Dynamic simulations of adhesion and friction in chemical force microscopy, J. Am. Chem. Soc., 124 (2002) 11764–11770.

    Article  Google Scholar 

  22. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 118 (1996) 11225–11236.

    Article  Google Scholar 

  23. C. D. Lorenz, E. B. Webb III, M. J. Stevens, M. Chandross and G. S. Grest, Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2, Tribo. Lett., 19 (2005) 93–98.

    Article  Google Scholar 

  24. S. D. Bond, B. J. Leimkuhler and B. B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics, J. Comput. Phys., 151 (1998) 114–134.

    Article  MathSciNet  Google Scholar 

  25. B. J. Leimkuhler and C. R. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale, SIAM J. Appl. Dyn. Syst., 4 (2005) 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. B. Sturgeon and B. B. Laird, Symplectic algorithm for constant-pressure molecular-dynamics using a Nosé-Poincare thermostat, J. Chem. Phys., 112 (2000) 3474–3482.

    Article  Google Scholar 

  27. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 52 (1984) 255–268.

    Article  Google Scholar 

  28. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984) 511–519.

    Article  Google Scholar 

  29. O. Okada, K. Oka, S. Kuwajima, S. Toyoda and K. Tanabe, Molecular simulation of an amorphous poly(methyl methacrylate)-poly(tetrafluoroethylene) interface, Comput. Theo. Polymer Sci., 10 (2000) 371–381.

    Article  Google Scholar 

  30. W. G. Hoover, Canonical dynamics: Equilibrium phasespace distributions, Phys Rev. A, 31 (1985) 1695–1697.

    Article  Google Scholar 

  31. P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolf, M. Genest and A. T. Hagler, Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system, Proteins: Structure, Function and Genetics, 4 (1988) 31–47.

    Article  Google Scholar 

  32. A. T. Hagler, S. Lifson and P. Dauber, Consistent force field studies of intermolecular forces in hydrogen bonded crystals. II. A benchmark for the objective comparison of alternative force fields, J. Am. Chem. Soc., 101 (1979) 5122–5130.

    Article  Google Scholar 

  33. E. K. Watkins and W. L. Jorgensen, Perfluoroalkanes: Conformational analysis and liquid-state properties from ab initio and monte carlo calculations, J. Phys. Chem. A, 105 (2001) 4118–4125.

    Article  Google Scholar 

  34. H. S. Park, H. H. Shin, M. Y. Sung, W. B. Choi, S. W. Choi and S. Y. Park, Novel process to improve defect problems for thermal nanoimprint lithography, IEEE T. Semiconduct. M., 20 (2007) 13–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyoung Im.

Additional information

This paper was recommended for publication in revised form by Editor Maenghyo Cho

Seyoung Im received B.S. (1976) of mechanical engineering from Seoul National University, Korea and Ph.D (1985) degree of theoretical and applied mechanics from University of Illinois at Urbana-Champaign, USA. He is currently a professor at the department of mechanical engineering in Korea Advanced Institute of Science and Technology (KAIST). His current interests are computational nanotechnology and multiphysics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, S., Lee, Y., Park, J. et al. Molecular simulation study on adhesions and deformations for Polymethyl Methacrylate (PMMA) resist in nanoimprint lithography. J Mech Sci Technol 25, 2311–2322 (2011). https://doi.org/10.1007/s12206-011-0709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-011-0709-0

Keywords

Navigation